Spaces:
Runtime error
Runtime error
File size: 27,657 Bytes
63deadc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
from __future__ import annotations
import json
from json import JSONDecodeError
from time import sleep
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import CallbackManager
from langchain_core.load import dumpd
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import RunnableConfig, RunnableSerializable, ensure_config
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_tool
if TYPE_CHECKING:
import openai
from openai.types.beta.threads import ThreadMessage
from openai.types.beta.threads.required_action_function_tool_call import (
RequiredActionFunctionToolCall,
)
class OpenAIAssistantFinish(AgentFinish):
"""AgentFinish with run and thread metadata."""
run_id: str
thread_id: str
@classmethod
def is_lc_serializable(cls) -> bool:
return False
class OpenAIAssistantAction(AgentAction):
"""AgentAction with info needed to submit custom tool output to existing run."""
tool_call_id: str
run_id: str
thread_id: str
@classmethod
def is_lc_serializable(cls) -> bool:
return False
def _get_openai_client() -> openai.OpenAI:
try:
import openai
return openai.OpenAI()
except ImportError as e:
raise ImportError(
"Unable to import openai, please install with `pip install openai`."
) from e
except AttributeError as e:
raise AttributeError(
"Please make sure you are using a v1.1-compatible version of openai. You "
'can install with `pip install "openai>=1.1"`.'
) from e
def _get_openai_async_client() -> openai.AsyncOpenAI:
try:
import openai
return openai.AsyncOpenAI()
except ImportError as e:
raise ImportError(
"Unable to import openai, please install with `pip install openai`."
) from e
except AttributeError as e:
raise AttributeError(
"Please make sure you are using a v1.1-compatible version of openai. You "
'can install with `pip install "openai>=1.1"`.'
) from e
def _is_assistants_builtin_tool(
tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
) -> bool:
"""Determine if tool corresponds to OpenAI Assistants built-in."""
assistants_builtin_tools = ("code_interpreter", "retrieval")
return (
isinstance(tool, dict)
and ("type" in tool)
and (tool["type"] in assistants_builtin_tools)
)
def _get_assistants_tool(
tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
) -> Dict[str, Any]:
"""Convert a raw function/class to an OpenAI tool.
Note that OpenAI assistants supports several built-in tools,
such as "code_interpreter" and "retrieval."
"""
if _is_assistants_builtin_tool(tool):
return tool # type: ignore
else:
return convert_to_openai_tool(tool)
OutputType = Union[
List[OpenAIAssistantAction],
OpenAIAssistantFinish,
List["ThreadMessage"],
List["RequiredActionFunctionToolCall"],
]
class OpenAIAssistantRunnable(RunnableSerializable[Dict, OutputType]):
"""Run an OpenAI Assistant.
Example using OpenAI tools:
.. code-block:: python
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable
interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=[{"type": "code_interpreter"}],
model="gpt-4-1106-preview"
)
output = interpreter_assistant.invoke({"content": "What's 10 - 4 raised to the 2.7"})
Example using custom tools and AgentExecutor:
.. code-block:: python
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable
from langchain.agents import AgentExecutor
from langchain.tools import E2BDataAnalysisTool
tools = [E2BDataAnalysisTool(api_key="...")]
agent = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant e2b tool",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=tools,
model="gpt-4-1106-preview",
as_agent=True
)
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"content": "What's 10 - 4 raised to the 2.7"})
Example using custom tools and custom execution:
.. code-block:: python
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable
from langchain.agents import AgentExecutor
from langchain_core.agents import AgentFinish
from langchain.tools import E2BDataAnalysisTool
tools = [E2BDataAnalysisTool(api_key="...")]
agent = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant e2b tool",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=tools,
model="gpt-4-1106-preview",
as_agent=True
)
def execute_agent(agent, tools, input):
tool_map = {tool.name: tool for tool in tools}
response = agent.invoke(input)
while not isinstance(response, AgentFinish):
tool_outputs = []
for action in response:
tool_output = tool_map[action.tool].invoke(action.tool_input)
tool_outputs.append({"output": tool_output, "tool_call_id": action.tool_call_id})
response = agent.invoke(
{
"tool_outputs": tool_outputs,
"run_id": action.run_id,
"thread_id": action.thread_id
}
)
return response
response = execute_agent(agent, tools, {"content": "What's 10 - 4 raised to the 2.7"})
next_response = execute_agent(agent, tools, {"content": "now add 17.241", "thread_id": response.thread_id})
""" # noqa: E501
client: Any = Field(default_factory=_get_openai_client)
"""OpenAI or AzureOpenAI client."""
async_client: Any = None
"""OpenAI or AzureOpenAI async client."""
assistant_id: str
"""OpenAI assistant id."""
check_every_ms: float = 1_000.0
"""Frequency with which to check run progress in ms."""
as_agent: bool = False
"""Use as a LangChain agent, compatible with the AgentExecutor."""
@root_validator()
def validate_async_client(cls, values: dict) -> dict:
if values["async_client"] is None:
import openai
api_key = values["client"].api_key
values["async_client"] = openai.AsyncOpenAI(api_key=api_key)
return values
@classmethod
def create_assistant(
cls,
name: str,
instructions: str,
tools: Sequence[Union[BaseTool, dict]],
model: str,
*,
client: Optional[Union[openai.OpenAI, openai.AzureOpenAI]] = None,
**kwargs: Any,
) -> OpenAIAssistantRunnable:
"""Create an OpenAI Assistant and instantiate the Runnable.
Args:
name: Assistant name.
instructions: Assistant instructions.
tools: Assistant tools. Can be passed in OpenAI format or as BaseTools.
model: Assistant model to use.
client: OpenAI or AzureOpenAI client.
Will create default OpenAI client if not specified.
Returns:
OpenAIAssistantRunnable configured to run using the created assistant.
"""
client = client or _get_openai_client()
assistant = client.beta.assistants.create(
name=name,
instructions=instructions,
tools=[_get_assistants_tool(tool) for tool in tools], # type: ignore
model=model,
file_ids=kwargs.get("file_ids"),
)
return cls(assistant_id=assistant.id, client=client, **kwargs)
def invoke(
self, input: dict, config: Optional[RunnableConfig] = None
) -> OutputType:
"""Invoke assistant.
Args:
input: Runnable input dict that can have:
content: User message when starting a new run.
thread_id: Existing thread to use.
run_id: Existing run to use. Should only be supplied when providing
the tool output for a required action after an initial invocation.
file_ids: File ids to include in new run. Used for retrieval.
message_metadata: Metadata to associate with new message.
thread_metadata: Metadata to associate with new thread. Only relevant
when new thread being created.
instructions: Additional run instructions.
model: Override Assistant model for this run.
tools: Override Assistant tools for this run.
run_metadata: Metadata to associate with new run.
config: Runnable config:
Return:
If self.as_agent, will return
Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]. Otherwise,
will return OpenAI types
Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]].
"""
config = ensure_config(config)
callback_manager = CallbackManager.configure(
inheritable_callbacks=config.get("callbacks"),
inheritable_tags=config.get("tags"),
inheritable_metadata=config.get("metadata"),
)
run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
)
try:
# Being run within AgentExecutor and there are tool outputs to submit.
if self.as_agent and input.get("intermediate_steps"):
tool_outputs = self._parse_intermediate_steps(
input["intermediate_steps"]
)
run = self.client.beta.threads.runs.submit_tool_outputs(**tool_outputs)
# Starting a new thread and a new run.
elif "thread_id" not in input:
thread = {
"messages": [
{
"role": "user",
"content": input["content"],
"file_ids": input.get("file_ids", []),
"metadata": input.get("message_metadata"),
}
],
"metadata": input.get("thread_metadata"),
}
run = self._create_thread_and_run(input, thread)
# Starting a new run in an existing thread.
elif "run_id" not in input:
_ = self.client.beta.threads.messages.create(
input["thread_id"],
content=input["content"],
role="user",
file_ids=input.get("file_ids", []),
metadata=input.get("message_metadata"),
)
run = self._create_run(input)
# Submitting tool outputs to an existing run, outside the AgentExecutor
# framework.
else:
run = self.client.beta.threads.runs.submit_tool_outputs(**input)
run = self._wait_for_run(run.id, run.thread_id)
except BaseException as e:
run_manager.on_chain_error(e)
raise e
try:
response = self._get_response(run)
except BaseException as e:
run_manager.on_chain_error(e, metadata=run.dict())
raise e
else:
run_manager.on_chain_end(response)
return response
@classmethod
async def acreate_assistant(
cls,
name: str,
instructions: str,
tools: Sequence[Union[BaseTool, dict]],
model: str,
*,
async_client: Optional[
Union[openai.AsyncOpenAI, openai.AsyncAzureOpenAI]
] = None,
**kwargs: Any,
) -> OpenAIAssistantRunnable:
"""Create an AsyncOpenAI Assistant and instantiate the Runnable.
Args:
name: Assistant name.
instructions: Assistant instructions.
tools: Assistant tools. Can be passed in OpenAI format or as BaseTools.
model: Assistant model to use.
async_client: AsyncOpenAI client.
Will create default async_client if not specified.
Returns:
AsyncOpenAIAssistantRunnable configured to run using the created assistant.
"""
async_client = async_client or _get_openai_async_client()
openai_tools = [_get_assistants_tool(tool) for tool in tools]
assistant = await async_client.beta.assistants.create(
name=name,
instructions=instructions,
tools=openai_tools, # type: ignore
model=model,
file_ids=kwargs.get("file_ids"),
)
return cls(assistant_id=assistant.id, async_client=async_client, **kwargs)
async def ainvoke(
self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> OutputType:
"""Async invoke assistant.
Args:
input: Runnable input dict that can have:
content: User message when starting a new run.
thread_id: Existing thread to use.
run_id: Existing run to use. Should only be supplied when providing
the tool output for a required action after an initial invocation.
file_ids: File ids to include in new run. Used for retrieval.
message_metadata: Metadata to associate with new message.
thread_metadata: Metadata to associate with new thread. Only relevant
when new thread being created.
instructions: Additional run instructions.
model: Override Assistant model for this run.
tools: Override Assistant tools for this run.
run_metadata: Metadata to associate with new run.
config: Runnable config:
Return:
If self.as_agent, will return
Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]. Otherwise,
will return OpenAI types
Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]].
"""
config = config or {}
callback_manager = CallbackManager.configure(
inheritable_callbacks=config.get("callbacks"),
inheritable_tags=config.get("tags"),
inheritable_metadata=config.get("metadata"),
)
run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
)
try:
# Being run within AgentExecutor and there are tool outputs to submit.
if self.as_agent and input.get("intermediate_steps"):
tool_outputs = self._parse_intermediate_steps(
input["intermediate_steps"]
)
run = await self.async_client.beta.threads.runs.submit_tool_outputs(
**tool_outputs
)
# Starting a new thread and a new run.
elif "thread_id" not in input:
thread = {
"messages": [
{
"role": "user",
"content": input["content"],
"file_ids": input.get("file_ids", []),
"metadata": input.get("message_metadata"),
}
],
"metadata": input.get("thread_metadata"),
}
run = await self._acreate_thread_and_run(input, thread)
# Starting a new run in an existing thread.
elif "run_id" not in input:
_ = await self.async_client.beta.threads.messages.create(
input["thread_id"],
content=input["content"],
role="user",
file_ids=input.get("file_ids", []),
metadata=input.get("message_metadata"),
)
run = await self._acreate_run(input)
# Submitting tool outputs to an existing run, outside the AgentExecutor
# framework.
else:
run = await self.async_client.beta.threads.runs.submit_tool_outputs(
**input
)
run = await self._await_for_run(run.id, run.thread_id)
except BaseException as e:
run_manager.on_chain_error(e)
raise e
try:
response = self._get_response(run)
except BaseException as e:
run_manager.on_chain_error(e, metadata=run.dict())
raise e
else:
run_manager.on_chain_end(response)
return response
def _parse_intermediate_steps(
self, intermediate_steps: List[Tuple[OpenAIAssistantAction, str]]
) -> dict:
last_action, last_output = intermediate_steps[-1]
run = self._wait_for_run(last_action.run_id, last_action.thread_id)
required_tool_call_ids = {
tc.id for tc in run.required_action.submit_tool_outputs.tool_calls
}
tool_outputs = [
{"output": str(output), "tool_call_id": action.tool_call_id}
for action, output in intermediate_steps
if action.tool_call_id in required_tool_call_ids
]
submit_tool_outputs = {
"tool_outputs": tool_outputs,
"run_id": last_action.run_id,
"thread_id": last_action.thread_id,
}
return submit_tool_outputs
def _create_run(self, input: dict) -> Any:
params = {
k: v
for k, v in input.items()
if k in ("instructions", "model", "tools", "run_metadata")
}
return self.client.beta.threads.runs.create(
input["thread_id"],
assistant_id=self.assistant_id,
**params,
)
def _create_thread_and_run(self, input: dict, thread: dict) -> Any:
params = {
k: v
for k, v in input.items()
if k in ("instructions", "model", "tools", "run_metadata")
}
run = self.client.beta.threads.create_and_run(
assistant_id=self.assistant_id,
thread=thread,
**params,
)
return run
def _get_response(self, run: Any) -> Any:
# TODO: Pagination
if run.status == "completed":
import openai
major_version = int(openai.version.VERSION.split(".")[0])
minor_version = int(openai.version.VERSION.split(".")[1])
version_gte_1_14 = (major_version > 1) or (
major_version == 1 and minor_version >= 14
)
messages = self.client.beta.threads.messages.list(
run.thread_id, order="asc"
)
new_messages = [msg for msg in messages if msg.run_id == run.id]
if not self.as_agent:
return new_messages
answer: Any = [
msg_content for msg in new_messages for msg_content in msg.content
]
if all(
(
isinstance(content, openai.types.beta.threads.TextContentBlock)
if version_gte_1_14
else isinstance(
content, openai.types.beta.threads.MessageContentText
)
)
for content in answer
):
answer = "\n".join(content.text.value for content in answer)
return OpenAIAssistantFinish(
return_values={
"output": answer,
"thread_id": run.thread_id,
"run_id": run.id,
},
log="",
run_id=run.id,
thread_id=run.thread_id,
)
elif run.status == "requires_action":
if not self.as_agent:
return run.required_action.submit_tool_outputs.tool_calls
actions = []
for tool_call in run.required_action.submit_tool_outputs.tool_calls:
function = tool_call.function
try:
args = json.loads(function.arguments, strict=False)
except JSONDecodeError as e:
raise ValueError(
f"Received invalid JSON function arguments: "
f"{function.arguments} for function {function.name}"
) from e
if len(args) == 1 and "__arg1" in args:
args = args["__arg1"]
actions.append(
OpenAIAssistantAction(
tool=function.name,
tool_input=args,
tool_call_id=tool_call.id,
log="",
run_id=run.id,
thread_id=run.thread_id,
)
)
return actions
else:
run_info = json.dumps(run.dict(), indent=2)
raise ValueError(
f"Unexpected run status: {run.status}. Full run info:\n\n{run_info})"
)
def _wait_for_run(self, run_id: str, thread_id: str) -> Any:
in_progress = True
while in_progress:
run = self.client.beta.threads.runs.retrieve(run_id, thread_id=thread_id)
in_progress = run.status in ("in_progress", "queued")
if in_progress:
sleep(self.check_every_ms / 1000)
return run
async def _aparse_intermediate_steps(
self, intermediate_steps: List[Tuple[OpenAIAssistantAction, str]]
) -> dict:
last_action, last_output = intermediate_steps[-1]
run = await self._wait_for_run(last_action.run_id, last_action.thread_id)
required_tool_call_ids = {
tc.id for tc in run.required_action.submit_tool_outputs.tool_calls
}
tool_outputs = [
{"output": str(output), "tool_call_id": action.tool_call_id}
for action, output in intermediate_steps
if action.tool_call_id in required_tool_call_ids
]
submit_tool_outputs = {
"tool_outputs": tool_outputs,
"run_id": last_action.run_id,
"thread_id": last_action.thread_id,
}
return submit_tool_outputs
async def _acreate_run(self, input: dict) -> Any:
params = {
k: v
for k, v in input.items()
if k in ("instructions", "model", "tools", "run_metadata")
}
return await self.async_client.beta.threads.runs.create(
input["thread_id"],
assistant_id=self.assistant_id,
**params,
)
async def _acreate_thread_and_run(self, input: dict, thread: dict) -> Any:
params = {
k: v
for k, v in input.items()
if k in ("instructions", "model", "tools", "run_metadata")
}
run = await self.async_client.beta.threads.create_and_run(
assistant_id=self.assistant_id,
thread=thread,
**params,
)
return run
async def _aget_response(self, run: Any) -> Any:
# TODO: Pagination
if run.status == "completed":
import openai
major_version = int(openai.version.VERSION.split(".")[0])
minor_version = int(openai.version.VERSION.split(".")[1])
version_gte_1_14 = (major_version > 1) or (
major_version == 1 and minor_version >= 14
)
messages = await self.async_client.beta.threads.messages.list(
run.thread_id, order="asc"
)
new_messages = [msg for msg in messages if msg.run_id == run.id]
if not self.as_agent:
return new_messages
answer: Any = [
msg_content for msg in new_messages for msg_content in msg.content
]
if all(
(
isinstance(content, openai.types.beta.threads.TextContentBlock)
if version_gte_1_14
else isinstance(
content, openai.types.beta.threads.MessageContentText
)
)
for content in answer
):
answer = "\n".join(content.text.value for content in answer)
return OpenAIAssistantFinish(
return_values={
"output": answer,
"thread_id": run.thread_id,
"run_id": run.id,
},
log="",
run_id=run.id,
thread_id=run.thread_id,
)
elif run.status == "requires_action":
if not self.as_agent:
return run.required_action.submit_tool_outputs.tool_calls
actions = []
for tool_call in run.required_action.submit_tool_outputs.tool_calls:
function = tool_call.function
try:
args = json.loads(function.arguments, strict=False)
except JSONDecodeError as e:
raise ValueError(
f"Received invalid JSON function arguments: "
f"{function.arguments} for function {function.name}"
) from e
if len(args) == 1 and "__arg1" in args:
args = args["__arg1"]
actions.append(
OpenAIAssistantAction(
tool=function.name,
tool_input=args,
tool_call_id=tool_call.id,
log="",
run_id=run.id,
thread_id=run.thread_id,
)
)
return actions
else:
run_info = json.dumps(run.dict(), indent=2)
raise ValueError(
f"Unexpected run status: {run.status}. Full run info:\n\n{run_info})"
)
async def _await_for_run(self, run_id: str, thread_id: str) -> Any:
in_progress = True
while in_progress:
run = await self.async_client.beta.threads.runs.retrieve(
run_id, thread_id=thread_id
)
in_progress = run.status in ("in_progress", "queued")
if in_progress:
sleep(self.check_every_ms / 1000)
return run
|