Spaces:
Runtime error
Runtime error
File size: 5,011 Bytes
63deadc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
"""**Chains** are easily reusable components linked together.
Chains encode a sequence of calls to components like models, document retrievers,
other Chains, etc., and provide a simple interface to this sequence.
The Chain interface makes it easy to create apps that are:
- **Stateful:** add Memory to any Chain to give it state,
- **Observable:** pass Callbacks to a Chain to execute additional functionality,
like logging, outside the main sequence of component calls,
- **Composable:** combine Chains with other components, including other Chains.
**Class hierarchy:**
.. code-block::
Chain --> <name>Chain # Examples: LLMChain, MapReduceChain, RouterChain
"""
from typing import Any
from langchain._api import create_importer
_module_lookup = {
"APIChain": "langchain.chains.api.base",
"OpenAPIEndpointChain": "langchain_community.chains.openapi.chain",
"AnalyzeDocumentChain": "langchain.chains.combine_documents.base",
"MapReduceDocumentsChain": "langchain.chains.combine_documents.map_reduce",
"MapRerankDocumentsChain": "langchain.chains.combine_documents.map_rerank",
"ReduceDocumentsChain": "langchain.chains.combine_documents.reduce",
"RefineDocumentsChain": "langchain.chains.combine_documents.refine",
"StuffDocumentsChain": "langchain.chains.combine_documents.stuff",
"ConstitutionalChain": "langchain.chains.constitutional_ai.base",
"ConversationChain": "langchain.chains.conversation.base",
"ChatVectorDBChain": "langchain.chains.conversational_retrieval.base",
"ConversationalRetrievalChain": "langchain.chains.conversational_retrieval.base",
"generate_example": "langchain.chains.example_generator",
"FlareChain": "langchain.chains.flare.base",
"ArangoGraphQAChain": "langchain_community.chains.graph_qa.arangodb",
"GraphQAChain": "langchain_community.chains.graph_qa.base",
"GraphCypherQAChain": "langchain_community.chains.graph_qa.cypher",
"FalkorDBQAChain": "langchain_community.chains.graph_qa.falkordb",
"HugeGraphQAChain": "langchain_community.chains.graph_qa.hugegraph",
"KuzuQAChain": "langchain_community.chains.graph_qa.kuzu",
"NebulaGraphQAChain": "langchain_community.chains.graph_qa.nebulagraph",
"NeptuneOpenCypherQAChain": "langchain_community.chains.graph_qa.neptune_cypher",
"NeptuneSparqlQAChain": "langchain_community.chains.graph_qa.neptune_sparql",
"OntotextGraphDBQAChain": "langchain_community.chains.graph_qa.ontotext_graphdb",
"GraphSparqlQAChain": "langchain_community.chains.graph_qa.sparql",
"create_history_aware_retriever": "langchain.chains.history_aware_retriever",
"HypotheticalDocumentEmbedder": "langchain.chains.hyde.base",
"LLMChain": "langchain.chains.llm",
"LLMCheckerChain": "langchain.chains.llm_checker.base",
"LLMMathChain": "langchain.chains.llm_math.base",
"LLMRequestsChain": "langchain_community.chains.llm_requests",
"LLMSummarizationCheckerChain": "langchain.chains.llm_summarization_checker.base",
"load_chain": "langchain.chains.loading",
"MapReduceChain": "langchain.chains.mapreduce",
"OpenAIModerationChain": "langchain.chains.moderation",
"NatBotChain": "langchain.chains.natbot.base",
"create_citation_fuzzy_match_chain": "langchain.chains.openai_functions",
"create_extraction_chain": "langchain.chains.openai_functions",
"create_extraction_chain_pydantic": "langchain.chains.openai_functions",
"create_qa_with_sources_chain": "langchain.chains.openai_functions",
"create_qa_with_structure_chain": "langchain.chains.openai_functions",
"create_tagging_chain": "langchain.chains.openai_functions",
"create_tagging_chain_pydantic": "langchain.chains.openai_functions",
"QAGenerationChain": "langchain.chains.qa_generation.base",
"QAWithSourcesChain": "langchain.chains.qa_with_sources.base",
"RetrievalQAWithSourcesChain": "langchain.chains.qa_with_sources.retrieval",
"VectorDBQAWithSourcesChain": "langchain.chains.qa_with_sources.vector_db",
"create_retrieval_chain": "langchain.chains.retrieval",
"RetrievalQA": "langchain.chains.retrieval_qa.base",
"VectorDBQA": "langchain.chains.retrieval_qa.base",
"LLMRouterChain": "langchain.chains.router",
"MultiPromptChain": "langchain.chains.router",
"MultiRetrievalQAChain": "langchain.chains.router",
"MultiRouteChain": "langchain.chains.router",
"RouterChain": "langchain.chains.router",
"SequentialChain": "langchain.chains.sequential",
"SimpleSequentialChain": "langchain.chains.sequential",
"create_sql_query_chain": "langchain.chains.sql_database.query",
"create_structured_output_runnable": "langchain.chains.structured_output",
"load_summarize_chain": "langchain.chains.summarize",
"TransformChain": "langchain.chains.transform",
}
importer = create_importer(__package__, module_lookup=_module_lookup)
def __getattr__(name: str) -> Any:
return importer(name)
__all__ = list(_module_lookup.keys())
|