File size: 20,995 Bytes
63deadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
"""Chain for chatting with a vector database."""
from __future__ import annotations

import inspect
import warnings
from abc import abstractmethod
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union

from langchain_core._api import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import BaseMessage
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.runnables import RunnableConfig
from langchain_core.vectorstores import VectorStore

from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain

# Depending on the memory type and configuration, the chat history format may differ.
# This needs to be consolidated.
CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]


_ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "}


def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str:
    buffer = ""
    for dialogue_turn in chat_history:
        if isinstance(dialogue_turn, BaseMessage):
            role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ")
            buffer += f"\n{role_prefix}{dialogue_turn.content}"
        elif isinstance(dialogue_turn, tuple):
            human = "Human: " + dialogue_turn[0]
            ai = "Assistant: " + dialogue_turn[1]
            buffer += "\n" + "\n".join([human, ai])
        else:
            raise ValueError(
                f"Unsupported chat history format: {type(dialogue_turn)}."
                f" Full chat history: {chat_history} "
            )
    return buffer


class InputType(BaseModel):
    """Input type for ConversationalRetrievalChain."""

    question: str
    """The question to answer."""
    chat_history: List[CHAT_TURN_TYPE] = Field(default_factory=list)
    """The chat history to use for retrieval."""


class BaseConversationalRetrievalChain(Chain):
    """Chain for chatting with an index."""

    combine_docs_chain: BaseCombineDocumentsChain
    """The chain used to combine any retrieved documents."""
    question_generator: LLMChain
    """The chain used to generate a new question for the sake of retrieval.
    This chain will take in the current question (with variable `question`)
    and any chat history (with variable `chat_history`) and will produce
    a new standalone question to be used later on."""
    output_key: str = "answer"
    """The output key to return the final answer of this chain in."""
    rephrase_question: bool = True
    """Whether or not to pass the new generated question to the combine_docs_chain.
    If True, will pass the new generated question along.
    If False, will only use the new generated question for retrieval and pass the
    original question along to the combine_docs_chain."""
    return_source_documents: bool = False
    """Return the retrieved source documents as part of the final result."""
    return_generated_question: bool = False
    """Return the generated question as part of the final result."""
    get_chat_history: Optional[Callable[[List[CHAT_TURN_TYPE]], str]] = None
    """An optional function to get a string of the chat history.
    If None is provided, will use a default."""
    response_if_no_docs_found: Optional[str]
    """If specified, the chain will return a fixed response if no docs 
    are found for the question. """

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True
        allow_population_by_field_name = True

    @property
    def input_keys(self) -> List[str]:
        """Input keys."""
        return ["question", "chat_history"]

    def get_input_schema(
        self, config: Optional[RunnableConfig] = None
    ) -> Type[BaseModel]:
        return InputType

    @property
    def output_keys(self) -> List[str]:
        """Return the output keys.

        :meta private:
        """
        _output_keys = [self.output_key]
        if self.return_source_documents:
            _output_keys = _output_keys + ["source_documents"]
        if self.return_generated_question:
            _output_keys = _output_keys + ["generated_question"]
        return _output_keys

    @abstractmethod
    def _get_docs(
        self,
        question: str,
        inputs: Dict[str, Any],
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        question = inputs["question"]
        get_chat_history = self.get_chat_history or _get_chat_history
        chat_history_str = get_chat_history(inputs["chat_history"])

        if chat_history_str:
            callbacks = _run_manager.get_child()
            new_question = self.question_generator.run(
                question=question, chat_history=chat_history_str, callbacks=callbacks
            )
        else:
            new_question = question
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._get_docs).parameters
        )
        if accepts_run_manager:
            docs = self._get_docs(new_question, inputs, run_manager=_run_manager)
        else:
            docs = self._get_docs(new_question, inputs)  # type: ignore[call-arg]
        output: Dict[str, Any] = {}
        if self.response_if_no_docs_found is not None and len(docs) == 0:
            output[self.output_key] = self.response_if_no_docs_found
        else:
            new_inputs = inputs.copy()
            if self.rephrase_question:
                new_inputs["question"] = new_question
            new_inputs["chat_history"] = chat_history_str
            answer = self.combine_docs_chain.run(
                input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
            )
            output[self.output_key] = answer

        if self.return_source_documents:
            output["source_documents"] = docs
        if self.return_generated_question:
            output["generated_question"] = new_question
        return output

    @abstractmethod
    async def _aget_docs(
        self,
        question: str,
        inputs: Dict[str, Any],
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
        question = inputs["question"]
        get_chat_history = self.get_chat_history or _get_chat_history
        chat_history_str = get_chat_history(inputs["chat_history"])
        if chat_history_str:
            callbacks = _run_manager.get_child()
            new_question = await self.question_generator.arun(
                question=question, chat_history=chat_history_str, callbacks=callbacks
            )
        else:
            new_question = question
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._aget_docs).parameters
        )
        if accepts_run_manager:
            docs = await self._aget_docs(new_question, inputs, run_manager=_run_manager)
        else:
            docs = await self._aget_docs(new_question, inputs)  # type: ignore[call-arg]

        output: Dict[str, Any] = {}
        if self.response_if_no_docs_found is not None and len(docs) == 0:
            output[self.output_key] = self.response_if_no_docs_found
        else:
            new_inputs = inputs.copy()
            if self.rephrase_question:
                new_inputs["question"] = new_question
            new_inputs["chat_history"] = chat_history_str
            answer = await self.combine_docs_chain.arun(
                input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
            )
            output[self.output_key] = answer

        if self.return_source_documents:
            output["source_documents"] = docs
        if self.return_generated_question:
            output["generated_question"] = new_question
        return output

    def save(self, file_path: Union[Path, str]) -> None:
        if self.get_chat_history:
            raise ValueError("Chain not saveable when `get_chat_history` is not None.")
        super().save(file_path)


@deprecated(
    since="0.1.17",
    alternative=(
        "create_history_aware_retriever together with create_retrieval_chain "
        "(see example in docstring)"
    ),
    removal="0.3.0",
)
class ConversationalRetrievalChain(BaseConversationalRetrievalChain):
    """Chain for having a conversation based on retrieved documents.

    This class is deprecated. See below for an example implementation using
    `create_retrieval_chain`. Additional walkthroughs can be found at
    https://python.langchain.com/docs/use_cases/question_answering/chat_history

        .. code-block:: python

            from langchain.chains import (
                create_history_aware_retriever,
                create_retrieval_chain,
            )
            from langchain.chains.combine_documents import create_stuff_documents_chain
            from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
            from langchain_openai import ChatOpenAI


            retriever = ...  # Your retriever

            llm = ChatOpenAI()

            # Contextualize question
            contextualize_q_system_prompt = (
                "Given a chat history and the latest user question "
                "which might reference context in the chat history, "
                "formulate a standalone question which can be understood "
                "without the chat history. Do NOT answer the question, just "
                "reformulate it if needed and otherwise return it as is."
            )
            contextualize_q_prompt = ChatPromptTemplate.from_messages(
                [
                    ("system", contextualize_q_system_prompt),
                    MessagesPlaceholder("chat_history"),
                    ("human", "{input}"),
                ]
            )
            history_aware_retriever = create_history_aware_retriever(
                llm, retriever, contextualize_q_prompt
            )

            # Answer question
            qa_system_prompt = (
                "You are an assistant for question-answering tasks. Use "
                "the following pieces of retrieved context to answer the "
                "question. If you don't know the answer, just say that you "
                "don't know. Use three sentences maximum and keep the answer "
                "concise."
                "\n\n"
                "{context}"
            )
            qa_prompt = ChatPromptTemplate.from_messages(
                [
                    ("system", qa_system_prompt),
                    MessagesPlaceholder("chat_history"),
                    ("human", "{input}"),
                ]
            )
            # Below we use create_stuff_documents_chain to feed all retrieved context
            # into the LLM. Note that we can also use StuffDocumentsChain and other
            # instances of BaseCombineDocumentsChain.
            question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
            rag_chain = create_retrieval_chain(
                history_aware_retriever, question_answer_chain
            )

            # Usage:
            chat_history = []  # Collect chat history here (a sequence of messages)
            rag_chain.invoke({"input": query, "chat_history": chat_history})

    This chain takes in chat history (a list of messages) and new questions,
    and then returns an answer to that question.
    The algorithm for this chain consists of three parts:

    1. Use the chat history and the new question to create a "standalone question".
    This is done so that this question can be passed into the retrieval step to fetch
    relevant documents. If only the new question was passed in, then relevant context
    may be lacking. If the whole conversation was passed into retrieval, there may
    be unnecessary information there that would distract from retrieval.

    2. This new question is passed to the retriever and relevant documents are
    returned.

    3. The retrieved documents are passed to an LLM along with either the new question
    (default behavior) or the original question and chat history to generate a final
    response.

    Example:
        .. code-block:: python

            from langchain.chains import (
                StuffDocumentsChain, LLMChain, ConversationalRetrievalChain
            )
            from langchain_core.prompts import PromptTemplate
            from langchain_community.llms import OpenAI

            combine_docs_chain = StuffDocumentsChain(...)
            vectorstore = ...
            retriever = vectorstore.as_retriever()

            # This controls how the standalone question is generated.
            # Should take `chat_history` and `question` as input variables.
            template = (
                "Combine the chat history and follow up question into "
                "a standalone question. Chat History: {chat_history}"
                "Follow up question: {question}"
            )
            prompt = PromptTemplate.from_template(template)
            llm = OpenAI()
            question_generator_chain = LLMChain(llm=llm, prompt=prompt)
            chain = ConversationalRetrievalChain(
                combine_docs_chain=combine_docs_chain,
                retriever=retriever,
                question_generator=question_generator_chain,
            )
    """

    retriever: BaseRetriever
    """Retriever to use to fetch documents."""
    max_tokens_limit: Optional[int] = None
    """If set, enforces that the documents returned are less than this limit.
    This is only enforced if `combine_docs_chain` is of type StuffDocumentsChain."""

    def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
        num_docs = len(docs)

        if self.max_tokens_limit and isinstance(
            self.combine_docs_chain, StuffDocumentsChain
        ):
            tokens = [
                self.combine_docs_chain.llm_chain._get_num_tokens(doc.page_content)
                for doc in docs
            ]
            token_count = sum(tokens[:num_docs])
            while token_count > self.max_tokens_limit:
                num_docs -= 1
                token_count -= tokens[num_docs]

        return docs[:num_docs]

    def _get_docs(
        self,
        question: str,
        inputs: Dict[str, Any],
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        docs = self.retriever.invoke(
            question, config={"callbacks": run_manager.get_child()}
        )
        return self._reduce_tokens_below_limit(docs)

    async def _aget_docs(
        self,
        question: str,
        inputs: Dict[str, Any],
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        docs = await self.retriever.ainvoke(
            question, config={"callbacks": run_manager.get_child()}
        )
        return self._reduce_tokens_below_limit(docs)

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        retriever: BaseRetriever,
        condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
        chain_type: str = "stuff",
        verbose: bool = False,
        condense_question_llm: Optional[BaseLanguageModel] = None,
        combine_docs_chain_kwargs: Optional[Dict] = None,
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> BaseConversationalRetrievalChain:
        """Convenience method to load chain from LLM and retriever.

        This provides some logic to create the `question_generator` chain
        as well as the combine_docs_chain.

        Args:
            llm: The default language model to use at every part of this chain
                (eg in both the question generation and the answering)
            retriever: The retriever to use to fetch relevant documents from.
            condense_question_prompt: The prompt to use to condense the chat history
                and new question into a standalone question.
            chain_type: The chain type to use to create the combine_docs_chain, will
                be sent to `load_qa_chain`.
            verbose: Verbosity flag for logging to stdout.
            condense_question_llm: The language model to use for condensing the chat
                history and new question into a standalone question. If none is
                provided, will default to `llm`.
            combine_docs_chain_kwargs: Parameters to pass as kwargs to `load_qa_chain`
                when constructing the combine_docs_chain.
            callbacks: Callbacks to pass to all subchains.
            **kwargs: Additional parameters to pass when initializing
                ConversationalRetrievalChain
        """
        combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
        doc_chain = load_qa_chain(
            llm,
            chain_type=chain_type,
            verbose=verbose,
            callbacks=callbacks,
            **combine_docs_chain_kwargs,
        )

        _llm = condense_question_llm or llm
        condense_question_chain = LLMChain(
            llm=_llm,
            prompt=condense_question_prompt,
            verbose=verbose,
            callbacks=callbacks,
        )
        return cls(
            retriever=retriever,
            combine_docs_chain=doc_chain,
            question_generator=condense_question_chain,
            callbacks=callbacks,
            **kwargs,
        )


class ChatVectorDBChain(BaseConversationalRetrievalChain):
    """Chain for chatting with a vector database."""

    vectorstore: VectorStore = Field(alias="vectorstore")
    top_k_docs_for_context: int = 4
    search_kwargs: dict = Field(default_factory=dict)

    @property
    def _chain_type(self) -> str:
        return "chat-vector-db"

    @root_validator()
    def raise_deprecation(cls, values: Dict) -> Dict:
        warnings.warn(
            "`ChatVectorDBChain` is deprecated - "
            "please use `from langchain.chains import ConversationalRetrievalChain`"
        )
        return values

    def _get_docs(
        self,
        question: str,
        inputs: Dict[str, Any],
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        vectordbkwargs = inputs.get("vectordbkwargs", {})
        full_kwargs = {**self.search_kwargs, **vectordbkwargs}
        return self.vectorstore.similarity_search(
            question, k=self.top_k_docs_for_context, **full_kwargs
        )

    async def _aget_docs(
        self,
        question: str,
        inputs: Dict[str, Any],
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        raise NotImplementedError("ChatVectorDBChain does not support async")

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        vectorstore: VectorStore,
        condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
        chain_type: str = "stuff",
        combine_docs_chain_kwargs: Optional[Dict] = None,
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> BaseConversationalRetrievalChain:
        """Load chain from LLM."""
        combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
        doc_chain = load_qa_chain(
            llm,
            chain_type=chain_type,
            callbacks=callbacks,
            **combine_docs_chain_kwargs,
        )
        condense_question_chain = LLMChain(
            llm=llm, prompt=condense_question_prompt, callbacks=callbacks
        )
        return cls(
            vectorstore=vectorstore,
            combine_docs_chain=doc_chain,
            question_generator=condense_question_chain,
            callbacks=callbacks,
            **kwargs,
        )