File size: 7,998 Bytes
63deadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""Question answering with sources over documents."""

from __future__ import annotations

import inspect
import re
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple

from langchain_core.callbacks import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
)
from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import Extra, root_validator

from langchain.chains import ReduceDocumentsChain
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.chains.qa_with_sources.map_reduce_prompt import (
    COMBINE_PROMPT,
    EXAMPLE_PROMPT,
    QUESTION_PROMPT,
)


class BaseQAWithSourcesChain(Chain, ABC):
    """Question answering chain with sources over documents."""

    combine_documents_chain: BaseCombineDocumentsChain
    """Chain to use to combine documents."""
    question_key: str = "question"  #: :meta private:
    input_docs_key: str = "docs"  #: :meta private:
    answer_key: str = "answer"  #: :meta private:
    sources_answer_key: str = "sources"  #: :meta private:
    return_source_documents: bool = False
    """Return the source documents."""

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
        question_prompt: BasePromptTemplate = QUESTION_PROMPT,
        combine_prompt: BasePromptTemplate = COMBINE_PROMPT,
        **kwargs: Any,
    ) -> BaseQAWithSourcesChain:
        """Construct the chain from an LLM."""
        llm_question_chain = LLMChain(llm=llm, prompt=question_prompt)
        llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt)
        combine_results_chain = StuffDocumentsChain(
            llm_chain=llm_combine_chain,
            document_prompt=document_prompt,
            document_variable_name="summaries",
        )
        reduce_documents_chain = ReduceDocumentsChain(  # type: ignore[misc]
            combine_documents_chain=combine_results_chain
        )
        combine_documents_chain = MapReduceDocumentsChain(
            llm_chain=llm_question_chain,
            reduce_documents_chain=reduce_documents_chain,
            document_variable_name="context",
        )
        return cls(
            combine_documents_chain=combine_documents_chain,
            **kwargs,
        )

    @classmethod
    def from_chain_type(
        cls,
        llm: BaseLanguageModel,
        chain_type: str = "stuff",
        chain_type_kwargs: Optional[dict] = None,
        **kwargs: Any,
    ) -> BaseQAWithSourcesChain:
        """Load chain from chain type."""
        _chain_kwargs = chain_type_kwargs or {}
        combine_documents_chain = load_qa_with_sources_chain(
            llm, chain_type=chain_type, **_chain_kwargs
        )
        return cls(combine_documents_chain=combine_documents_chain, **kwargs)

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True

    @property
    def input_keys(self) -> List[str]:
        """Expect input key.

        :meta private:
        """
        return [self.question_key]

    @property
    def output_keys(self) -> List[str]:
        """Return output key.

        :meta private:
        """
        _output_keys = [self.answer_key, self.sources_answer_key]
        if self.return_source_documents:
            _output_keys = _output_keys + ["source_documents"]
        return _output_keys

    @root_validator(pre=True)
    def validate_naming(cls, values: Dict) -> Dict:
        """Fix backwards compatibility in naming."""
        if "combine_document_chain" in values:
            values["combine_documents_chain"] = values.pop("combine_document_chain")
        return values

    def _split_sources(self, answer: str) -> Tuple[str, str]:
        """Split sources from answer."""
        if re.search(r"SOURCES?:", answer, re.IGNORECASE):
            answer, sources = re.split(
                r"SOURCES?:|QUESTION:\s", answer, flags=re.IGNORECASE
            )[:2]
            sources = re.split(r"\n", sources)[0].strip()
        else:
            sources = ""
        return answer, sources

    @abstractmethod
    def _get_docs(
        self,
        inputs: Dict[str, Any],
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs to run questioning over."""

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._get_docs).parameters
        )
        if accepts_run_manager:
            docs = self._get_docs(inputs, run_manager=_run_manager)
        else:
            docs = self._get_docs(inputs)  # type: ignore[call-arg]

        answer = self.combine_documents_chain.run(
            input_documents=docs, callbacks=_run_manager.get_child(), **inputs
        )
        answer, sources = self._split_sources(answer)
        result: Dict[str, Any] = {
            self.answer_key: answer,
            self.sources_answer_key: sources,
        }
        if self.return_source_documents:
            result["source_documents"] = docs
        return result

    @abstractmethod
    async def _aget_docs(
        self,
        inputs: Dict[str, Any],
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs to run questioning over."""

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._aget_docs).parameters
        )
        if accepts_run_manager:
            docs = await self._aget_docs(inputs, run_manager=_run_manager)
        else:
            docs = await self._aget_docs(inputs)  # type: ignore[call-arg]
        answer = await self.combine_documents_chain.arun(
            input_documents=docs, callbacks=_run_manager.get_child(), **inputs
        )
        answer, sources = self._split_sources(answer)
        result: Dict[str, Any] = {
            self.answer_key: answer,
            self.sources_answer_key: sources,
        }
        if self.return_source_documents:
            result["source_documents"] = docs
        return result


class QAWithSourcesChain(BaseQAWithSourcesChain):
    """Question answering with sources over documents."""

    input_docs_key: str = "docs"  #: :meta private:

    @property
    def input_keys(self) -> List[str]:
        """Expect input key.

        :meta private:
        """
        return [self.input_docs_key, self.question_key]

    def _get_docs(
        self,
        inputs: Dict[str, Any],
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs to run questioning over."""
        return inputs.pop(self.input_docs_key)

    async def _aget_docs(
        self,
        inputs: Dict[str, Any],
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs to run questioning over."""
        return inputs.pop(self.input_docs_key)

    @property
    def _chain_type(self) -> str:
        return "qa_with_sources_chain"