File size: 8,811 Bytes
63deadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""Load question answering chains."""
from typing import Any, Mapping, Optional, Protocol

from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate

from langchain.chains import ReduceDocumentsChain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import (
    map_reduce_prompt,
    refine_prompts,
    stuff_prompt,
)
from langchain.chains.question_answering.map_rerank_prompt import (
    PROMPT as MAP_RERANK_PROMPT,
)


class LoadingCallable(Protocol):
    """Interface for loading the combine documents chain."""

    def __call__(
        self, llm: BaseLanguageModel, **kwargs: Any
    ) -> BaseCombineDocumentsChain:
        """Callable to load the combine documents chain."""


def _load_map_rerank_chain(
    llm: BaseLanguageModel,
    prompt: BasePromptTemplate = MAP_RERANK_PROMPT,
    verbose: bool = False,
    document_variable_name: str = "context",
    rank_key: str = "score",
    answer_key: str = "answer",
    callback_manager: Optional[BaseCallbackManager] = None,
    callbacks: Callbacks = None,
    **kwargs: Any,
) -> MapRerankDocumentsChain:
    llm_chain = LLMChain(
        llm=llm,
        prompt=prompt,
        verbose=verbose,
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    return MapRerankDocumentsChain(
        llm_chain=llm_chain,
        rank_key=rank_key,
        answer_key=answer_key,
        document_variable_name=document_variable_name,
        verbose=verbose,
        callback_manager=callback_manager,
        **kwargs,
    )


def _load_stuff_chain(
    llm: BaseLanguageModel,
    prompt: Optional[BasePromptTemplate] = None,
    document_variable_name: str = "context",
    verbose: Optional[bool] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    callbacks: Callbacks = None,
    **kwargs: Any,
) -> StuffDocumentsChain:
    _prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
    llm_chain = LLMChain(
        llm=llm,
        prompt=_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    # TODO: document prompt
    return StuffDocumentsChain(
        llm_chain=llm_chain,
        document_variable_name=document_variable_name,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
        **kwargs,
    )


def _load_map_reduce_chain(
    llm: BaseLanguageModel,
    question_prompt: Optional[BasePromptTemplate] = None,
    combine_prompt: Optional[BasePromptTemplate] = None,
    combine_document_variable_name: str = "summaries",
    map_reduce_document_variable_name: str = "context",
    collapse_prompt: Optional[BasePromptTemplate] = None,
    reduce_llm: Optional[BaseLanguageModel] = None,
    collapse_llm: Optional[BaseLanguageModel] = None,
    verbose: Optional[bool] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    callbacks: Callbacks = None,
    token_max: int = 3000,
    **kwargs: Any,
) -> MapReduceDocumentsChain:
    _question_prompt = (
        question_prompt or map_reduce_prompt.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
    )
    _combine_prompt = (
        combine_prompt or map_reduce_prompt.COMBINE_PROMPT_SELECTOR.get_prompt(llm)
    )
    map_chain = LLMChain(
        llm=llm,
        prompt=_question_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    _reduce_llm = reduce_llm or llm
    reduce_chain = LLMChain(
        llm=_reduce_llm,
        prompt=_combine_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    # TODO: document prompt
    combine_documents_chain = StuffDocumentsChain(
        llm_chain=reduce_chain,
        document_variable_name=combine_document_variable_name,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    if collapse_prompt is None:
        collapse_chain = None
        if collapse_llm is not None:
            raise ValueError(
                "collapse_llm provided, but collapse_prompt was not: please "
                "provide one or stop providing collapse_llm."
            )
    else:
        _collapse_llm = collapse_llm or llm
        collapse_chain = StuffDocumentsChain(
            llm_chain=LLMChain(
                llm=_collapse_llm,
                prompt=collapse_prompt,
                verbose=verbose,  # type: ignore[arg-type]
                callback_manager=callback_manager,
                callbacks=callbacks,
            ),
            document_variable_name=combine_document_variable_name,
            verbose=verbose,  # type: ignore[arg-type]
            callback_manager=callback_manager,
        )
    reduce_documents_chain = ReduceDocumentsChain(  # type: ignore[misc]
        combine_documents_chain=combine_documents_chain,
        collapse_documents_chain=collapse_chain,
        token_max=token_max,
        verbose=verbose,
    )
    return MapReduceDocumentsChain(
        llm_chain=map_chain,
        document_variable_name=map_reduce_document_variable_name,
        reduce_documents_chain=reduce_documents_chain,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
        **kwargs,
    )


def _load_refine_chain(
    llm: BaseLanguageModel,
    question_prompt: Optional[BasePromptTemplate] = None,
    refine_prompt: Optional[BasePromptTemplate] = None,
    document_variable_name: str = "context_str",
    initial_response_name: str = "existing_answer",
    refine_llm: Optional[BaseLanguageModel] = None,
    verbose: Optional[bool] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    callbacks: Callbacks = None,
    **kwargs: Any,
) -> RefineDocumentsChain:
    _question_prompt = (
        question_prompt or refine_prompts.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
    )
    _refine_prompt = refine_prompt or refine_prompts.REFINE_PROMPT_SELECTOR.get_prompt(
        llm
    )
    initial_chain = LLMChain(
        llm=llm,
        prompt=_question_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    _refine_llm = refine_llm or llm
    refine_chain = LLMChain(
        llm=_refine_llm,
        prompt=_refine_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
    )
    return RefineDocumentsChain(
        initial_llm_chain=initial_chain,
        refine_llm_chain=refine_chain,
        document_variable_name=document_variable_name,
        initial_response_name=initial_response_name,
        verbose=verbose,  # type: ignore[arg-type]
        callback_manager=callback_manager,
        callbacks=callbacks,
        **kwargs,
    )


def load_qa_chain(
    llm: BaseLanguageModel,
    chain_type: str = "stuff",
    verbose: Optional[bool] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    **kwargs: Any,
) -> BaseCombineDocumentsChain:
    """Load question answering chain.

    Args:
        llm: Language Model to use in the chain.
        chain_type: Type of document combining chain to use. Should be one of "stuff",
            "map_reduce", "map_rerank", and "refine".
        verbose: Whether chains should be run in verbose mode or not. Note that this
            applies to all chains that make up the final chain.
        callback_manager: Callback manager to use for the chain.

    Returns:
        A chain to use for question answering.
    """
    loader_mapping: Mapping[str, LoadingCallable] = {
        "stuff": _load_stuff_chain,
        "map_reduce": _load_map_reduce_chain,
        "refine": _load_refine_chain,
        "map_rerank": _load_map_rerank_chain,
    }
    if chain_type not in loader_mapping:
        raise ValueError(
            f"Got unsupported chain type: {chain_type}. "
            f"Should be one of {loader_mapping.keys()}"
        )
    return loader_mapping[chain_type](
        llm, verbose=verbose, callback_manager=callback_manager, **kwargs
    )