File size: 25,514 Bytes
63deadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import json
from typing import Any, Callable, Dict, Literal, Optional, Sequence, Type, Union

from langchain_core._api import deprecated
from langchain_core.output_parsers import (
    BaseGenerationOutputParser,
    BaseOutputParser,
    JsonOutputParser,
    PydanticOutputParser,
)
from langchain_core.output_parsers.openai_functions import (
    JsonOutputFunctionsParser,
    PydanticAttrOutputFunctionsParser,
    PydanticOutputFunctionsParser,
)
from langchain_core.output_parsers.openai_tools import (
    JsonOutputKeyToolsParser,
    PydanticToolsParser,
)
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import Runnable
from langchain_core.utils.function_calling import (
    convert_to_openai_function,
    convert_to_openai_tool,
)


@deprecated(
    since="0.1.14",
    message=(
        "LangChain has introduced a method called `with_structured_output` that "
        "is available on ChatModels capable of tool calling. "
        "You can read more about the method here: "
        "https://python.langchain.com/docs/modules/model_io/chat/structured_output/ "
        "Please follow our extraction use case documentation for more guidelines "
        "on how to do information extraction with LLMs. "
        "https://python.langchain.com/docs/use_cases/extraction/. "
        "If you notice other issues, please provide "
        "feedback here: "
        "https://github.com/langchain-ai/langchain/discussions/18154"
    ),
    removal="0.3.0",
    alternative=(
        """
            from langchain_core.pydantic_v1 import BaseModel, Field
            from langchain_anthropic import ChatAnthropic
    
            class Joke(BaseModel):
                setup: str = Field(description="The setup of the joke")
                punchline: str = Field(description="The punchline to the joke") 
    
            # Or any other chat model that supports tools.
            # Please reference to to the documentation of structured_output
            # to see an up to date list of which models support 
            # with_structured_output.
            model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
            structured_llm = model.with_structured_output(Joke)
            structured_llm.invoke("Tell me a joke about cats. 
                Make sure to call the Joke function.")
            """
    ),
)
def create_openai_fn_runnable(
    functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
    llm: Runnable,
    prompt: Optional[BasePromptTemplate] = None,
    *,
    enforce_single_function_usage: bool = True,
    output_parser: Optional[Union[BaseOutputParser, BaseGenerationOutputParser]] = None,
    **llm_kwargs: Any,
) -> Runnable:
    """Create a runnable sequence that uses OpenAI functions.

    Args:
        functions: A sequence of either dictionaries, pydantic.BaseModels classes, or
            Python functions. If dictionaries are passed in, they are assumed to
            already be a valid OpenAI functions. If only a single
            function is passed in, then it will be enforced that the model use that
            function. pydantic.BaseModels and Python functions should have docstrings
            describing what the function does. For best results, pydantic.BaseModels
            should have descriptions of the parameters and Python functions should have
            Google Python style args descriptions in the docstring. Additionally,
            Python functions should only use primitive types (str, int, float, bool) or
            pydantic.BaseModels for arguments.
        llm: Language model to use, assumed to support the OpenAI function-calling API.
        prompt: BasePromptTemplate to pass to the model.
        enforce_single_function_usage: only used if a single function is passed in. If
            True, then the model will be forced to use the given function. If False,
            then the model will be given the option to use the given function or not.
        output_parser: BaseLLMOutputParser to use for parsing model outputs. By default
            will be inferred from the function types. If pydantic.BaseModels are passed
            in, then the OutputParser will try to parse outputs using those. Otherwise
            model outputs will simply be parsed as JSON. If multiple functions are
            passed in and they are not pydantic.BaseModels, the chain output will
            include both the name of the function that was returned and the arguments
            to pass to the function.
        **llm_kwargs: Additional named arguments to pass to the language model.

    Returns:
        A runnable sequence that will pass in the given functions to the model when run.

    Example:
        .. code-block:: python

                from typing import Optional

                from langchain.chains.structured_output import create_openai_fn_runnable
                from langchain_openai import ChatOpenAI
                from langchain_core.pydantic_v1 import BaseModel, Field


                class RecordPerson(BaseModel):
                    '''Record some identifying information about a person.'''

                    name: str = Field(..., description="The person's name")
                    age: int = Field(..., description="The person's age")
                    fav_food: Optional[str] = Field(None, description="The person's favorite food")


                class RecordDog(BaseModel):
                    '''Record some identifying information about a dog.'''

                    name: str = Field(..., description="The dog's name")
                    color: str = Field(..., description="The dog's color")
                    fav_food: Optional[str] = Field(None, description="The dog's favorite food")


                llm = ChatOpenAI(model="gpt-4", temperature=0)
                structured_llm = create_openai_fn_runnable([RecordPerson, RecordDog], llm)
                structured_llm.invoke("Harry was a chubby brown beagle who loved chicken)
                # -> RecordDog(name="Harry", color="brown", fav_food="chicken")
    """  # noqa: E501
    if not functions:
        raise ValueError("Need to pass in at least one function. Received zero.")
    openai_functions = [convert_to_openai_function(f) for f in functions]
    llm_kwargs_: Dict[str, Any] = {"functions": openai_functions, **llm_kwargs}
    if len(openai_functions) == 1 and enforce_single_function_usage:
        llm_kwargs_["function_call"] = {"name": openai_functions[0]["name"]}
    output_parser = output_parser or get_openai_output_parser(functions)
    if prompt:
        return prompt | llm.bind(**llm_kwargs_) | output_parser
    else:
        return llm.bind(**llm_kwargs_) | output_parser


@deprecated(
    since="0.1.17",
    message=(
        "LangChain has introduced a method called `with_structured_output` that "
        "is available on ChatModels capable of tool calling. "
        "You can read more about the method here: "
        "https://python.langchain.com/docs/modules/model_io/chat/structured_output/ "
        "Please follow our extraction use case documentation for more guidelines "
        "on how to do information extraction with LLMs. "
        "https://python.langchain.com/docs/use_cases/extraction/. "
        "If you notice other issues, please provide "
        "feedback here: "
        "https://github.com/langchain-ai/langchain/discussions/18154"
    ),
    removal="0.3.0",
    alternative=(
        """
            from langchain_core.pydantic_v1 import BaseModel, Field
            from langchain_anthropic import ChatAnthropic

            class Joke(BaseModel):
                setup: str = Field(description="The setup of the joke")
                punchline: str = Field(description="The punchline to the joke") 

            # Or any other chat model that supports tools.
            # Please reference to to the documentation of structured_output
            # to see an up to date list of which models support 
            # with_structured_output.
            model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
            structured_llm = model.with_structured_output(Joke)
            structured_llm.invoke("Tell me a joke about cats. 
                Make sure to call the Joke function.")
            """
    ),
)
def create_structured_output_runnable(
    output_schema: Union[Dict[str, Any], Type[BaseModel]],
    llm: Runnable,
    prompt: Optional[BasePromptTemplate] = None,
    *,
    output_parser: Optional[Union[BaseOutputParser, BaseGenerationOutputParser]] = None,
    enforce_function_usage: bool = True,
    return_single: bool = True,
    mode: Literal[
        "openai-functions", "openai-tools", "openai-json"
    ] = "openai-functions",
    **kwargs: Any,
) -> Runnable:
    """Create a runnable for extracting structured outputs.

    Args:
        output_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
            is passed in, it's assumed to already be a valid JsonSchema.
            For best results, pydantic.BaseModels should have docstrings describing what
            the schema represents and descriptions for the parameters.
        llm: Language model to use. Assumed to support the OpenAI function-calling API 
            if mode is 'openai-function'. Assumed to support OpenAI response_format 
            parameter if mode is 'openai-json'.
        prompt: BasePromptTemplate to pass to the model. If mode is 'openai-json' and 
            prompt has input variable 'output_schema' then the given output_schema 
            will be converted to a JsonSchema and inserted in the prompt.
        output_parser: Output parser to use for parsing model outputs. By default
            will be inferred from the function types. If pydantic.BaseModel is passed
            in, then the OutputParser will try to parse outputs using the pydantic 
            class. Otherwise model outputs will be parsed as JSON.
        mode: How structured outputs are extracted from the model. If 'openai-functions' 
            then OpenAI function calling is used with the deprecated 'functions', 
            'function_call' schema. If 'openai-tools' then OpenAI function 
            calling with the latest 'tools', 'tool_choice' schema is used. This is 
            recommended over 'openai-functions'. If 'openai-json' then OpenAI model 
            with response_format set to JSON is used.
        enforce_function_usage: Only applies when mode is 'openai-tools' or 
            'openai-functions'. If True, then the model will be forced to use the given 
            output schema. If False, then the model can elect whether to use the output 
            schema.
        return_single: Only applies when mode is 'openai-tools'. Whether to a list of 
            structured outputs or a single one. If True and model does not return any 
            structured outputs then chain output is None. If False and model does not 
            return any structured outputs then chain output is an empty list.
        **kwargs: Additional named arguments.

    Returns:
        A runnable sequence that will return a structured output(s) matching the given 
            output_schema.
    
    OpenAI tools example with Pydantic schema (mode='openai-tools'):
        .. code-block:: python
        
                from typing import Optional

                from langchain.chains import create_structured_output_runnable
                from langchain_openai import ChatOpenAI
                from langchain_core.pydantic_v1 import BaseModel, Field


                class RecordDog(BaseModel):
                    '''Record some identifying information about a dog.'''

                    name: str = Field(..., description="The dog's name")
                    color: str = Field(..., description="The dog's color")
                    fav_food: Optional[str] = Field(None, description="The dog's favorite food")

                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                prompt = ChatPromptTemplate.from_messages(
                    [
                        ("system", "You are an extraction algorithm. Please extract every possible instance"), 
                        ('human', '{input}')
                    ]
                )
                structured_llm = create_structured_output_runnable(
                    RecordDog, 
                    llm, 
                    mode="openai-tools", 
                    enforce_function_usage=True, 
                    return_single=True
                )
                structured_llm.invoke({"input": "Harry was a chubby brown beagle who loved chicken"})
                # -> RecordDog(name="Harry", color="brown", fav_food="chicken")
                
    OpenAI tools example with dict schema (mode="openai-tools"):
        .. code-block:: python
        
                from typing import Optional

                from langchain.chains import create_structured_output_runnable
                from langchain_openai import ChatOpenAI


                dog_schema = {
                    "type": "function",
                    "function": {
                        "name": "record_dog",
                        "description": "Record some identifying information about a dog.",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "name": {
                                    "description": "The dog's name",
                                    "type": "string"
                                },
                                "color": {
                                    "description": "The dog's color",
                                    "type": "string"
                                },
                                "fav_food": {
                                    "description": "The dog's favorite food",
                                    "type": "string"
                                }
                            },
                            "required": ["name", "color"]
                        }
                    }
                }


                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = create_structured_output_runnable(
                    dog_schema, 
                    llm, 
                    mode="openai-tools", 
                    enforce_function_usage=True, 
                    return_single=True
                )
                structured_llm.invoke("Harry was a chubby brown beagle who loved chicken")
                # -> {'name': 'Harry', 'color': 'brown', 'fav_food': 'chicken'}
    
    OpenAI functions example (mode="openai-functions"):
        .. code-block:: python

                from typing import Optional

                from langchain.chains import create_structured_output_runnable
                from langchain_openai import ChatOpenAI
                from langchain_core.pydantic_v1 import BaseModel, Field

                class Dog(BaseModel):
                    '''Identifying information about a dog.'''

                    name: str = Field(..., description="The dog's name")
                    color: str = Field(..., description="The dog's color")
                    fav_food: Optional[str] = Field(None, description="The dog's favorite food")

                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = create_structured_output_runnable(Dog, llm, mode="openai-functions")
                structured_llm.invoke("Harry was a chubby brown beagle who loved chicken")
                # -> Dog(name="Harry", color="brown", fav_food="chicken")
                
    OpenAI functions with prompt example:
        .. code-block:: python

                from typing import Optional

                from langchain.chains import create_structured_output_runnable
                from langchain_openai import ChatOpenAI
                from langchain_core.prompts import ChatPromptTemplate
                from langchain_core.pydantic_v1 import BaseModel, Field

                class Dog(BaseModel):
                    '''Identifying information about a dog.'''

                    name: str = Field(..., description="The dog's name")
                    color: str = Field(..., description="The dog's color")
                    fav_food: Optional[str] = Field(None, description="The dog's favorite food")

                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = create_structured_output_runnable(Dog, llm, mode="openai-functions")
                system = '''Extract information about any dogs mentioned in the user input.'''
                prompt = ChatPromptTemplate.from_messages(
                    [("system", system), ("human", "{input}"),]
                )
                chain = prompt | structured_llm
                chain.invoke({"input": "Harry was a chubby brown beagle who loved chicken"})
                # -> Dog(name="Harry", color="brown", fav_food="chicken")
    OpenAI json response format example (mode="openai-json"):
        .. code-block:: python
        
                from typing import Optional

                from langchain.chains import create_structured_output_runnable
                from langchain_openai import ChatOpenAI
                from langchain_core.prompts import ChatPromptTemplate
                from langchain_core.pydantic_v1 import BaseModel, Field

                class Dog(BaseModel):
                    '''Identifying information about a dog.'''

                    name: str = Field(..., description="The dog's name")
                    color: str = Field(..., description="The dog's color")
                    fav_food: Optional[str] = Field(None, description="The dog's favorite food")

                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = create_structured_output_runnable(Dog, llm, mode="openai-json")
                system = '''You are a world class assistant for extracting information in structured JSON formats. \
                
                Extract a valid JSON blob from the user input that matches the following JSON Schema:
                
                {output_schema}'''
                prompt = ChatPromptTemplate.from_messages(
                    [("system", system), ("human", "{input}"),]
                )
                chain = prompt | structured_llm
                chain.invoke({"input": "Harry was a chubby brown beagle who loved chicken"})
    """  # noqa: E501
    # for backwards compatibility
    force_function_usage = kwargs.get(
        "enforce_single_function_usage", enforce_function_usage
    )

    if mode == "openai-tools":
        # Protect against typos in kwargs
        keys_in_kwargs = set(kwargs.keys())
        # Backwards compatibility keys
        unrecognized_keys = keys_in_kwargs - {"enforce_single_function_usage"}
        if unrecognized_keys:
            raise TypeError(
                f"Got an unexpected keyword argument(s): {unrecognized_keys}."
            )

        return _create_openai_tools_runnable(
            output_schema,
            llm,
            prompt=prompt,
            output_parser=output_parser,
            enforce_tool_usage=force_function_usage,
            first_tool_only=return_single,
        )

    elif mode == "openai-functions":
        return _create_openai_functions_structured_output_runnable(
            output_schema,
            llm,
            prompt=prompt,
            output_parser=output_parser,
            enforce_single_function_usage=force_function_usage,
            **kwargs,  # llm-specific kwargs
        )
    elif mode == "openai-json":
        if force_function_usage:
            raise ValueError(
                "enforce_single_function_usage is not supported for mode='openai-json'."
            )
        return _create_openai_json_runnable(
            output_schema, llm, prompt=prompt, output_parser=output_parser, **kwargs
        )
    else:
        raise ValueError(
            f"Invalid mode {mode}. Expected one of 'openai-tools', 'openai-functions', "
            f"'openai-json'."
        )


def _create_openai_tools_runnable(
    tool: Union[Dict[str, Any], Type[BaseModel], Callable],
    llm: Runnable,
    *,
    prompt: Optional[BasePromptTemplate],
    output_parser: Optional[Union[BaseOutputParser, BaseGenerationOutputParser]],
    enforce_tool_usage: bool,
    first_tool_only: bool,
) -> Runnable:
    oai_tool = convert_to_openai_tool(tool)
    llm_kwargs: Dict[str, Any] = {"tools": [oai_tool]}
    if enforce_tool_usage:
        llm_kwargs["tool_choice"] = {
            "type": "function",
            "function": {"name": oai_tool["function"]["name"]},
        }
    output_parser = output_parser or _get_openai_tool_output_parser(
        tool, first_tool_only=first_tool_only
    )
    if prompt:
        return prompt | llm.bind(**llm_kwargs) | output_parser
    else:
        return llm.bind(**llm_kwargs) | output_parser


def _get_openai_tool_output_parser(
    tool: Union[Dict[str, Any], Type[BaseModel], Callable],
    *,
    first_tool_only: bool = False,
) -> Union[BaseOutputParser, BaseGenerationOutputParser]:
    if isinstance(tool, type) and issubclass(tool, BaseModel):
        output_parser: Union[
            BaseOutputParser, BaseGenerationOutputParser
        ] = PydanticToolsParser(tools=[tool], first_tool_only=first_tool_only)
    else:
        key_name = convert_to_openai_tool(tool)["function"]["name"]
        output_parser = JsonOutputKeyToolsParser(
            first_tool_only=first_tool_only, key_name=key_name
        )
    return output_parser


def get_openai_output_parser(
    functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
) -> Union[BaseOutputParser, BaseGenerationOutputParser]:
    """Get the appropriate function output parser given the user functions.

    Args:
        functions: Sequence where element is a dictionary, a pydantic.BaseModel class,
            or a Python function. If a dictionary is passed in, it is assumed to
            already be a valid OpenAI function.

    Returns:
        A PydanticOutputFunctionsParser if functions are Pydantic classes, otherwise
            a JsonOutputFunctionsParser. If there's only one function and it is
            not a Pydantic class, then the output parser will automatically extract
            only the function arguments and not the function name.
    """
    if isinstance(functions[0], type) and issubclass(functions[0], BaseModel):
        if len(functions) > 1:
            pydantic_schema: Union[Dict, Type[BaseModel]] = {
                convert_to_openai_function(fn)["name"]: fn for fn in functions
            }
        else:
            pydantic_schema = functions[0]
        output_parser: Union[
            BaseOutputParser, BaseGenerationOutputParser
        ] = PydanticOutputFunctionsParser(pydantic_schema=pydantic_schema)
    else:
        output_parser = JsonOutputFunctionsParser(args_only=len(functions) <= 1)
    return output_parser


def _create_openai_json_runnable(
    output_schema: Union[Dict[str, Any], Type[BaseModel]],
    llm: Runnable,
    prompt: Optional[BasePromptTemplate] = None,
    *,
    output_parser: Optional[Union[BaseOutputParser, BaseGenerationOutputParser]] = None,
) -> Runnable:
    """"""
    if isinstance(output_schema, type) and issubclass(output_schema, BaseModel):
        output_parser = output_parser or PydanticOutputParser(
            pydantic_object=output_schema,
        )
        schema_as_dict = convert_to_openai_function(output_schema)["parameters"]
    else:
        output_parser = output_parser or JsonOutputParser()
        schema_as_dict = output_schema

    llm = llm.bind(response_format={"type": "json_object"})
    if prompt:
        if "output_schema" in prompt.input_variables:
            prompt = prompt.partial(output_schema=json.dumps(schema_as_dict, indent=2))

        return prompt | llm | output_parser
    else:
        return llm | output_parser


def _create_openai_functions_structured_output_runnable(
    output_schema: Union[Dict[str, Any], Type[BaseModel]],
    llm: Runnable,
    prompt: Optional[BasePromptTemplate] = None,
    *,
    output_parser: Optional[Union[BaseOutputParser, BaseGenerationOutputParser]] = None,
    **llm_kwargs: Any,
) -> Runnable:
    if isinstance(output_schema, dict):
        function: Any = {
            "name": "output_formatter",
            "description": (
                "Output formatter. Should always be used to format your response to the"
                " user."
            ),
            "parameters": output_schema,
        }
    else:

        class _OutputFormatter(BaseModel):
            """Output formatter. Should always be used to format your response to the user."""  # noqa: E501

            output: output_schema  # type: ignore

        function = _OutputFormatter
        output_parser = output_parser or PydanticAttrOutputFunctionsParser(
            pydantic_schema=_OutputFormatter, attr_name="output"
        )
    return create_openai_fn_runnable(
        [function],
        llm,
        prompt=prompt,
        output_parser=output_parser,
        **llm_kwargs,
    )