Spaces:
Runtime error
Runtime error
File size: 17,095 Bytes
63deadc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
"""A chain for comparing the output of two models using embeddings."""
from enum import Enum
from typing import Any, Dict, List, Optional
import numpy as np
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
Callbacks,
)
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import Field, root_validator
from langchain.chains.base import Chain
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
from langchain.schema import RUN_KEY
def _embedding_factory() -> Embeddings:
"""Create an Embeddings object.
Returns:
Embeddings: The created Embeddings object.
"""
# Here for backwards compatibility.
# Generally, we do not want to be seeing imports from langchain community
# or partner packages in langchain.
try:
from langchain_openai import OpenAIEmbeddings
except ImportError:
try:
from langchain_community.embeddings.openai import OpenAIEmbeddings
except ImportError:
raise ImportError(
"Could not import OpenAIEmbeddings. Please install the "
"OpenAIEmbeddings package using `pip install langchain-openai`."
)
return OpenAIEmbeddings()
class EmbeddingDistance(str, Enum):
"""Embedding Distance Metric.
Attributes:
COSINE: Cosine distance metric.
EUCLIDEAN: Euclidean distance metric.
MANHATTAN: Manhattan distance metric.
CHEBYSHEV: Chebyshev distance metric.
HAMMING: Hamming distance metric.
"""
COSINE = "cosine"
EUCLIDEAN = "euclidean"
MANHATTAN = "manhattan"
CHEBYSHEV = "chebyshev"
HAMMING = "hamming"
class _EmbeddingDistanceChainMixin(Chain):
"""Shared functionality for embedding distance evaluators.
Attributes:
embeddings (Embeddings): The embedding objects to vectorize the outputs.
distance_metric (EmbeddingDistance): The distance metric to use
for comparing the embeddings.
"""
embeddings: Embeddings = Field(default_factory=_embedding_factory)
distance_metric: EmbeddingDistance = Field(default=EmbeddingDistance.COSINE)
@root_validator(pre=False)
def _validate_tiktoken_installed(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate that the TikTok library is installed.
Args:
values (Dict[str, Any]): The values to validate.
Returns:
Dict[str, Any]: The validated values.
"""
embeddings = values.get("embeddings")
types_ = []
try:
from langchain_openai import OpenAIEmbeddings
types_.append(OpenAIEmbeddings)
except ImportError:
pass
try:
from langchain_community.embeddings.openai import OpenAIEmbeddings
types_.append(OpenAIEmbeddings)
except ImportError:
pass
if not types_:
raise ImportError(
"Could not import OpenAIEmbeddings. Please install the "
"OpenAIEmbeddings package using `pip install langchain-openai`."
)
if isinstance(embeddings, tuple(types_)):
try:
import tiktoken # noqa: F401
except ImportError:
raise ImportError(
"The tiktoken library is required to use the default "
"OpenAI embeddings with embedding distance evaluators."
" Please either manually select a different Embeddings object"
" or install tiktoken using `pip install tiktoken`."
)
return values
class Config:
"""Permit embeddings to go unvalidated."""
arbitrary_types_allowed: bool = True
@property
def output_keys(self) -> List[str]:
"""Return the output keys of the chain.
Returns:
List[str]: The output keys.
"""
return ["score"]
def _prepare_output(self, result: dict) -> dict:
parsed = {"score": result["score"]}
if RUN_KEY in result:
parsed[RUN_KEY] = result[RUN_KEY]
return parsed
def _get_metric(self, metric: EmbeddingDistance) -> Any:
"""Get the metric function for the given metric name.
Args:
metric (EmbeddingDistance): The metric name.
Returns:
Any: The metric function.
"""
metrics = {
EmbeddingDistance.COSINE: self._cosine_distance,
EmbeddingDistance.EUCLIDEAN: self._euclidean_distance,
EmbeddingDistance.MANHATTAN: self._manhattan_distance,
EmbeddingDistance.CHEBYSHEV: self._chebyshev_distance,
EmbeddingDistance.HAMMING: self._hamming_distance,
}
if metric in metrics:
return metrics[metric]
else:
raise ValueError(f"Invalid metric: {metric}")
@staticmethod
def _cosine_distance(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""Compute the cosine distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.ndarray: The cosine distance.
"""
try:
from langchain_community.utils.math import cosine_similarity
except ImportError:
raise ImportError(
"The cosine_similarity function is required to compute cosine distance."
" Please install the langchain-community package using"
" `pip install langchain-community`."
)
return 1.0 - cosine_similarity(a, b)
@staticmethod
def _euclidean_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Euclidean distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Euclidean distance.
"""
return np.linalg.norm(a - b)
@staticmethod
def _manhattan_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Manhattan distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Manhattan distance.
"""
return np.sum(np.abs(a - b))
@staticmethod
def _chebyshev_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Chebyshev distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Chebyshev distance.
"""
return np.max(np.abs(a - b))
@staticmethod
def _hamming_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Hamming distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Hamming distance.
"""
return np.mean(a != b)
def _compute_score(self, vectors: np.ndarray) -> float:
"""Compute the score based on the distance metric.
Args:
vectors (np.ndarray): The input vectors.
Returns:
float: The computed score.
"""
metric = self._get_metric(self.distance_metric)
score = metric(vectors[0].reshape(1, -1), vectors[1].reshape(1, -1)).item()
return score
class EmbeddingDistanceEvalChain(_EmbeddingDistanceChainMixin, StringEvaluator):
"""Use embedding distances to score semantic difference between
a prediction and reference.
Examples:
>>> chain = EmbeddingDistanceEvalChain()
>>> result = chain.evaluate_strings(prediction="Hello", reference="Hi")
>>> print(result)
{'score': 0.5}
"""
@property
def requires_reference(self) -> bool:
"""Return whether the chain requires a reference.
Returns:
bool: True if a reference is required, False otherwise.
"""
return True
@property
def evaluation_name(self) -> str:
return f"embedding_{self.distance_metric.value}_distance"
@property
def input_keys(self) -> List[str]:
"""Return the input keys of the chain.
Returns:
List[str]: The input keys.
"""
return ["prediction", "reference"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Compute the score for a prediction and reference.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (Optional[CallbackManagerForChainRun], optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
vectors = np.array(
self.embeddings.embed_documents([inputs["prediction"], inputs["reference"]])
)
score = self._compute_score(vectors)
return {"score": score}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Asynchronously compute the score for a prediction and reference.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (AsyncCallbackManagerForChainRun, optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
embedded = await self.embeddings.aembed_documents(
[inputs["prediction"], inputs["reference"]]
)
vectors = np.array(embedded)
score = self._compute_score(vectors)
return {"score": score}
def _evaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate the embedding distance between a prediction and
reference.
Args:
prediction (str): The output string from the first model.
reference (str): The reference string (required)
callbacks (Callbacks, optional): The callbacks to use.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = self(
inputs={"prediction": prediction, "reference": reference},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate the embedding distance between
a prediction and reference.
Args:
prediction (str): The output string from the first model.
reference (str): The output string from the second model.
callbacks (Callbacks, optional): The callbacks to use.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = await self.acall(
inputs={"prediction": prediction, "reference": reference},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
class PairwiseEmbeddingDistanceEvalChain(
_EmbeddingDistanceChainMixin, PairwiseStringEvaluator
):
"""Use embedding distances to score semantic difference between two predictions.
Examples:
>>> chain = PairwiseEmbeddingDistanceEvalChain()
>>> result = chain.evaluate_string_pairs(prediction="Hello", prediction_b="Hi")
>>> print(result)
{'score': 0.5}
"""
@property
def input_keys(self) -> List[str]:
"""Return the input keys of the chain.
Returns:
List[str]: The input keys.
"""
return ["prediction", "prediction_b"]
@property
def evaluation_name(self) -> str:
return f"pairwise_embedding_{self.distance_metric.value}_distance"
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Compute the score for two predictions.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (CallbackManagerForChainRun, optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
vectors = np.array(
self.embeddings.embed_documents(
[inputs["prediction"], inputs["prediction_b"]]
)
)
score = self._compute_score(vectors)
return {"score": score}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Asynchronously compute the score for two predictions.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (AsyncCallbackManagerForChainRun, optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
embedded = await self.embeddings.aembed_documents(
[inputs["prediction"], inputs["prediction_b"]]
)
vectors = np.array(embedded)
score = self._compute_score(vectors)
return {"score": score}
def _evaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate the embedding distance between two predictions.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
callbacks (Callbacks, optional): The callbacks to use.
tags (List[str], optional): Tags to apply to traces
metadata (Dict[str, Any], optional): metadata to apply to
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = self(
inputs={"prediction": prediction, "prediction_b": prediction_b},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate the embedding distance
between two predictions.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
callbacks (Callbacks, optional): The callbacks to use.
tags (List[str], optional): Tags to apply to traces
metadata (Dict[str, Any], optional): metadata to apply to traces
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = await self.acall(
inputs={"prediction": prediction, "prediction_b": prediction_b},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
|