File size: 14,019 Bytes
63deadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
"""String distance evaluators based on the RapidFuzz library."""

from enum import Enum
from typing import Any, Callable, Dict, List, Optional

from langchain_core.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain_core.pydantic_v1 import Field, root_validator

from langchain.chains.base import Chain
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
from langchain.schema import RUN_KEY


def _load_rapidfuzz() -> Any:
    """
    Load the RapidFuzz library.

    Raises:
        ImportError: If the rapidfuzz library is not installed.

    Returns:
        Any: The rapidfuzz.distance module.
    """
    try:
        import rapidfuzz
    except ImportError:
        raise ImportError(
            "Please install the rapidfuzz library to use the FuzzyMatchStringEvaluator."
            "Please install it with `pip install rapidfuzz`."
        )
    return rapidfuzz.distance


class StringDistance(str, Enum):
    """Distance metric to use.

    Attributes:
        DAMERAU_LEVENSHTEIN: The Damerau-Levenshtein distance.
        LEVENSHTEIN: The Levenshtein distance.
        JARO: The Jaro distance.
        JARO_WINKLER: The Jaro-Winkler distance.
        HAMMING: The Hamming distance.
        INDEL: The Indel distance.
    """

    DAMERAU_LEVENSHTEIN = "damerau_levenshtein"
    LEVENSHTEIN = "levenshtein"
    JARO = "jaro"
    JARO_WINKLER = "jaro_winkler"
    HAMMING = "hamming"
    INDEL = "indel"


class _RapidFuzzChainMixin(Chain):
    """Shared methods for the rapidfuzz string distance evaluators."""

    distance: StringDistance = Field(default=StringDistance.JARO_WINKLER)
    normalize_score: bool = Field(default=True)
    """Whether to normalize the score to a value between 0 and 1.
    Applies only to the Levenshtein and Damerau-Levenshtein distances."""

    @root_validator
    def validate_dependencies(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """
        Validate that the rapidfuzz library is installed.

        Args:
            values (Dict[str, Any]): The input values.

        Returns:
            Dict[str, Any]: The validated values.
        """
        _load_rapidfuzz()
        return values

    @property
    def output_keys(self) -> List[str]:
        """
        Get the output keys.

        Returns:
            List[str]: The output keys.
        """
        return ["score"]

    def _prepare_output(self, result: Dict[str, Any]) -> Dict[str, Any]:
        """
        Prepare the output dictionary.

        Args:
            result (Dict[str, Any]): The evaluation results.

        Returns:
            Dict[str, Any]: The prepared output dictionary.
        """
        result = {"score": result["score"]}
        if RUN_KEY in result:
            result[RUN_KEY] = result[RUN_KEY].dict()
        return result

    @staticmethod
    def _get_metric(distance: str, normalize_score: bool = False) -> Callable:
        """
        Get the distance metric function based on the distance type.

        Args:
            distance (str): The distance type.

        Returns:
            Callable: The distance metric function.

        Raises:
            ValueError: If the distance metric is invalid.
        """
        from rapidfuzz import distance as rf_distance

        module_map: Dict[str, Any] = {
            StringDistance.DAMERAU_LEVENSHTEIN: rf_distance.DamerauLevenshtein,
            StringDistance.LEVENSHTEIN: rf_distance.Levenshtein,
            StringDistance.JARO: rf_distance.Jaro,
            StringDistance.JARO_WINKLER: rf_distance.JaroWinkler,
            StringDistance.HAMMING: rf_distance.Hamming,
            StringDistance.INDEL: rf_distance.Indel,
        }
        if distance not in module_map:
            raise ValueError(
                f"Invalid distance metric: {distance}"
                f"\nMust be one of: {list(StringDistance)}"
            )
        module = module_map[distance]
        if normalize_score:
            return module.normalized_distance
        else:
            return module.distance

    @property
    def metric(self) -> Callable:
        """
        Get the distance metric function.

        Returns:
            Callable: The distance metric function.
        """
        return _RapidFuzzChainMixin._get_metric(
            self.distance, normalize_score=self.normalize_score
        )

    def compute_metric(self, a: str, b: str) -> float:
        """
        Compute the distance between two strings.

        Args:
            a (str): The first string.
            b (str): The second string.

        Returns:
            float: The distance between the two strings.
        """
        return self.metric(a, b)


class StringDistanceEvalChain(StringEvaluator, _RapidFuzzChainMixin):
    """Compute string distances between the prediction and the reference.

    Examples
    ----------

    >>> from langchain.evaluation import StringDistanceEvalChain
    >>> evaluator = StringDistanceEvalChain()
    >>> evaluator.evaluate_strings(
            prediction="Mindy is the CTO",
            reference="Mindy is the CEO",
        )

    Using the `load_evaluator` function:

    >>> from langchain.evaluation import load_evaluator
    >>> evaluator = load_evaluator("string_distance")
    >>> evaluator.evaluate_strings(
            prediction="The answer is three",
            reference="three",
        )
    """

    @property
    def requires_input(self) -> bool:
        """
        This evaluator does not require input.
        """
        return False

    @property
    def requires_reference(self) -> bool:
        """
        This evaluator does not require a reference.
        """
        return True

    @property
    def input_keys(self) -> List[str]:
        """
        Get the input keys.

        Returns:
            List[str]: The input keys.
        """
        return ["reference", "prediction"]

    @property
    def evaluation_name(self) -> str:
        """
        Get the evaluation name.

        Returns:
            str: The evaluation name.
        """
        return f"{self.distance.value}_distance"

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """
        Compute the string distance between the prediction and the reference.

        Args:
            inputs (Dict[str, Any]): The input values.
            run_manager (Optional[CallbackManagerForChainRun]):
                The callback manager.

        Returns:
            Dict[str, Any]: The evaluation results containing the score.
        """
        return {"score": self.compute_metric(inputs["reference"], inputs["prediction"])}

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """
        Asynchronously compute the string distance between the prediction
            and the reference.

        Args:
            inputs (Dict[str, Any]): The input values.
            run_manager (Optional[AsyncCallbackManagerForChainRun]:
                The callback manager.

        Returns:
            Dict[str, Any]: The evaluation results containing the score.
        """
        return {"score": self.compute_metric(inputs["reference"], inputs["prediction"])}

    def _evaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        callbacks: Callbacks = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        """
        Evaluate the string distance between the prediction and the reference.

        Args:
            prediction (str): The prediction string.
            reference (Optional[str], optional): The reference string.
            input (Optional[str], optional): The input string.
            callbacks (Callbacks, optional): The callbacks to use.
            **kwargs: Additional keyword arguments.

        Returns:
            dict: The evaluation results containing the score.
        """
        result = self(
            inputs={"prediction": prediction, "reference": reference},
            callbacks=callbacks,
            tags=tags,
            metadata=metadata,
            include_run_info=include_run_info,
        )

        return self._prepare_output(result)

    async def _aevaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        callbacks: Callbacks = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        """
        Asynchronously evaluate the string distance between the
            prediction and the reference.

        Args:
            prediction (str): The prediction string.
            reference (Optional[str], optional): The reference string.
            input (Optional[str], optional): The input string.
            callbacks (Callbacks, optional): The callbacks to use.
            **kwargs: Additional keyword arguments.

        Returns:
            dict: The evaluation results containing the score.
        """
        result = await self.acall(
            inputs={"prediction": prediction, "reference": reference},
            callbacks=callbacks,
            tags=tags,
            metadata=metadata,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)


class PairwiseStringDistanceEvalChain(PairwiseStringEvaluator, _RapidFuzzChainMixin):
    """Compute string edit distances between two predictions."""

    @property
    def input_keys(self) -> List[str]:
        """
        Get the input keys.

        Returns:
            List[str]: The input keys.
        """
        return ["prediction", "prediction_b"]

    @property
    def evaluation_name(self) -> str:
        """
        Get the evaluation name.

        Returns:
            str: The evaluation name.
        """
        return f"pairwise_{self.distance.value}_distance"

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """
        Compute the string distance between two predictions.

        Args:
            inputs (Dict[str, Any]): The input values.
            run_manager (CallbackManagerForChainRun , optional):
                The callback manager.

        Returns:
            Dict[str, Any]: The evaluation results containing the score.
        """
        return {
            "score": self.compute_metric(inputs["prediction"], inputs["prediction_b"])
        }

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """
        Asynchronously compute the string distance between two predictions.

        Args:
            inputs (Dict[str, Any]): The input values.
            run_manager (AsyncCallbackManagerForChainRun , optional):
                The callback manager.

        Returns:
            Dict[str, Any]: The evaluation results containing the score.
        """
        return {
            "score": self.compute_metric(inputs["prediction"], inputs["prediction_b"])
        }

    def _evaluate_string_pairs(
        self,
        *,
        prediction: str,
        prediction_b: str,
        callbacks: Callbacks = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        """
        Evaluate the string distance between two predictions.

        Args:
            prediction (str): The first prediction string.
            prediction_b (str): The second prediction string.
            callbacks (Callbacks, optional): The callbacks to use.
            tags (List[str], optional): Tags to apply to traces.
            metadata (Dict[str, Any], optional): Metadata to apply to traces.
            **kwargs: Additional keyword arguments.

        Returns:
            dict: The evaluation results containing the score.
        """
        result = self(
            inputs={"prediction": prediction, "prediction_b": prediction_b},
            callbacks=callbacks,
            tags=tags,
            metadata=metadata,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)

    async def _aevaluate_string_pairs(
        self,
        *,
        prediction: str,
        prediction_b: str,
        callbacks: Callbacks = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        """
        Asynchronously evaluate the string distance between two predictions.

        Args:
            prediction (str): The first prediction string.
            prediction_b (str): The second prediction string.
            callbacks (Callbacks, optional): The callbacks to use.
            tags (List[str], optional): Tags to apply to traces.
            metadata (Dict[str, Any], optional): Metadata to apply to traces.
            **kwargs: Additional keyword arguments.

        Returns:
            dict: The evaluation results containing the score.
        """
        result = await self.acall(
            inputs={"prediction": prediction, "prediction_b": prediction_b},
            callbacks=callbacks,
            tags=tags,
            metadata=metadata,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)