Spaces:
Runtime error
Runtime error
import re | |
from typing import Any, List, Optional, Sequence, Tuple, Union | |
from langchain_core._api import deprecated | |
from langchain_core.agents import AgentAction | |
from langchain_core.callbacks import BaseCallbackManager | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.prompts import BasePromptTemplate | |
from langchain_core.prompts.chat import ( | |
ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
SystemMessagePromptTemplate, | |
) | |
from langchain_core.pydantic_v1 import Field | |
from langchain_core.runnables import Runnable, RunnablePassthrough | |
from langchain_core.tools import BaseTool | |
from langchain.agents.agent import Agent, AgentOutputParser | |
from langchain.agents.format_scratchpad import format_log_to_str | |
from langchain.agents.output_parsers import JSONAgentOutputParser | |
from langchain.agents.structured_chat.output_parser import ( | |
StructuredChatOutputParserWithRetries, | |
) | |
from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX | |
from langchain.chains.llm import LLMChain | |
from langchain.tools.render import ToolsRenderer, render_text_description_and_args | |
HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}" | |
class StructuredChatAgent(Agent): | |
"""Structured Chat Agent.""" | |
output_parser: AgentOutputParser = Field( | |
default_factory=StructuredChatOutputParserWithRetries | |
) | |
"""Output parser for the agent.""" | |
def observation_prefix(self) -> str: | |
"""Prefix to append the observation with.""" | |
return "Observation: " | |
def llm_prefix(self) -> str: | |
"""Prefix to append the llm call with.""" | |
return "Thought:" | |
def _construct_scratchpad( | |
self, intermediate_steps: List[Tuple[AgentAction, str]] | |
) -> str: | |
agent_scratchpad = super()._construct_scratchpad(intermediate_steps) | |
if not isinstance(agent_scratchpad, str): | |
raise ValueError("agent_scratchpad should be of type string.") | |
if agent_scratchpad: | |
return ( | |
f"This was your previous work " | |
f"(but I haven't seen any of it! I only see what " | |
f"you return as final answer):\n{agent_scratchpad}" | |
) | |
else: | |
return agent_scratchpad | |
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: | |
pass | |
def _get_default_output_parser( | |
cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any | |
) -> AgentOutputParser: | |
return StructuredChatOutputParserWithRetries.from_llm(llm=llm) | |
def _stop(self) -> List[str]: | |
return ["Observation:"] | |
def create_prompt( | |
cls, | |
tools: Sequence[BaseTool], | |
prefix: str = PREFIX, | |
suffix: str = SUFFIX, | |
human_message_template: str = HUMAN_MESSAGE_TEMPLATE, | |
format_instructions: str = FORMAT_INSTRUCTIONS, | |
input_variables: Optional[List[str]] = None, | |
memory_prompts: Optional[List[BasePromptTemplate]] = None, | |
) -> BasePromptTemplate: | |
tool_strings = [] | |
for tool in tools: | |
args_schema = re.sub("}", "}}", re.sub("{", "{{", str(tool.args))) | |
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}") | |
formatted_tools = "\n".join(tool_strings) | |
tool_names = ", ".join([tool.name for tool in tools]) | |
format_instructions = format_instructions.format(tool_names=tool_names) | |
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix]) | |
if input_variables is None: | |
input_variables = ["input", "agent_scratchpad"] | |
_memory_prompts = memory_prompts or [] | |
messages = [ | |
SystemMessagePromptTemplate.from_template(template), | |
*_memory_prompts, | |
HumanMessagePromptTemplate.from_template(human_message_template), | |
] | |
return ChatPromptTemplate(input_variables=input_variables, messages=messages) # type: ignore[arg-type] | |
def from_llm_and_tools( | |
cls, | |
llm: BaseLanguageModel, | |
tools: Sequence[BaseTool], | |
callback_manager: Optional[BaseCallbackManager] = None, | |
output_parser: Optional[AgentOutputParser] = None, | |
prefix: str = PREFIX, | |
suffix: str = SUFFIX, | |
human_message_template: str = HUMAN_MESSAGE_TEMPLATE, | |
format_instructions: str = FORMAT_INSTRUCTIONS, | |
input_variables: Optional[List[str]] = None, | |
memory_prompts: Optional[List[BasePromptTemplate]] = None, | |
**kwargs: Any, | |
) -> Agent: | |
"""Construct an agent from an LLM and tools.""" | |
cls._validate_tools(tools) | |
prompt = cls.create_prompt( | |
tools, | |
prefix=prefix, | |
suffix=suffix, | |
human_message_template=human_message_template, | |
format_instructions=format_instructions, | |
input_variables=input_variables, | |
memory_prompts=memory_prompts, | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
callback_manager=callback_manager, | |
) | |
tool_names = [tool.name for tool in tools] | |
_output_parser = output_parser or cls._get_default_output_parser(llm=llm) | |
return cls( | |
llm_chain=llm_chain, | |
allowed_tools=tool_names, | |
output_parser=_output_parser, | |
**kwargs, | |
) | |
def _agent_type(self) -> str: | |
raise ValueError | |
def create_structured_chat_agent( | |
llm: BaseLanguageModel, | |
tools: Sequence[BaseTool], | |
prompt: ChatPromptTemplate, | |
tools_renderer: ToolsRenderer = render_text_description_and_args, | |
*, | |
stop_sequence: Union[bool, List[str]] = True, | |
) -> Runnable: | |
"""Create an agent aimed at supporting tools with multiple inputs. | |
Args: | |
llm: LLM to use as the agent. | |
tools: Tools this agent has access to. | |
prompt: The prompt to use. See Prompt section below for more. | |
stop_sequence: bool or list of str. | |
If True, adds a stop token of "Observation:" to avoid hallucinates. | |
If False, does not add a stop token. | |
If a list of str, uses the provided list as the stop tokens. | |
Default is True. You may to set this to False if the LLM you are using | |
does not support stop sequences. | |
tools_renderer: This controls how the tools are converted into a string and | |
then passed into the LLM. Default is `render_text_description`. | |
Returns: | |
A Runnable sequence representing an agent. It takes as input all the same input | |
variables as the prompt passed in does. It returns as output either an | |
AgentAction or AgentFinish. | |
Examples: | |
.. code-block:: python | |
from langchain import hub | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain.agents import AgentExecutor, create_structured_chat_agent | |
prompt = hub.pull("hwchase17/structured-chat-agent") | |
model = ChatOpenAI() | |
tools = ... | |
agent = create_structured_chat_agent(model, tools, prompt) | |
agent_executor = AgentExecutor(agent=agent, tools=tools) | |
agent_executor.invoke({"input": "hi"}) | |
# Using with chat history | |
from langchain_core.messages import AIMessage, HumanMessage | |
agent_executor.invoke( | |
{ | |
"input": "what's my name?", | |
"chat_history": [ | |
HumanMessage(content="hi! my name is bob"), | |
AIMessage(content="Hello Bob! How can I assist you today?"), | |
], | |
} | |
) | |
Prompt: | |
The prompt must have input keys: | |
* `tools`: contains descriptions and arguments for each tool. | |
* `tool_names`: contains all tool names. | |
* `agent_scratchpad`: contains previous agent actions and tool outputs as a string. | |
Here's an example: | |
.. code-block:: python | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools: | |
{tools} | |
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input). | |
Valid "action" values: "Final Answer" or {tool_names} | |
Provide only ONE action per $JSON_BLOB, as shown: | |
``` | |
{{ | |
"action": $TOOL_NAME, | |
"action_input": $INPUT | |
}} | |
``` | |
Follow this format: | |
Question: input question to answer | |
Thought: consider previous and subsequent steps | |
Action: | |
``` | |
$JSON_BLOB | |
``` | |
Observation: action result | |
... (repeat Thought/Action/Observation N times) | |
Thought: I know what to respond | |
Action: | |
``` | |
{{ | |
"action": "Final Answer", | |
"action_input": "Final response to human" | |
}} | |
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation''' | |
human = '''{input} | |
{agent_scratchpad} | |
(reminder to respond in a JSON blob no matter what)''' | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", system), | |
MessagesPlaceholder("chat_history", optional=True), | |
("human", human), | |
] | |
) | |
""" # noqa: E501 | |
missing_vars = {"tools", "tool_names", "agent_scratchpad"}.difference( | |
prompt.input_variables + list(prompt.partial_variables) | |
) | |
if missing_vars: | |
raise ValueError(f"Prompt missing required variables: {missing_vars}") | |
prompt = prompt.partial( | |
tools=tools_renderer(list(tools)), | |
tool_names=", ".join([t.name for t in tools]), | |
) | |
if stop_sequence: | |
stop = ["\nObservation"] if stop_sequence is True else stop_sequence | |
llm_with_stop = llm.bind(stop=stop) | |
else: | |
llm_with_stop = llm | |
agent = ( | |
RunnablePassthrough.assign( | |
agent_scratchpad=lambda x: format_log_to_str(x["intermediate_steps"]), | |
) | |
| prompt | |
| llm_with_stop | |
| JSONAgentOutputParser() | |
) | |
return agent | |