Spaces:
Runtime error
Runtime error
import json | |
from typing import Any, Callable, Optional, Union | |
from langchain_core.utils.json import parse_json_markdown | |
from langchain.evaluation.schema import StringEvaluator | |
class JsonEditDistanceEvaluator(StringEvaluator): | |
""" | |
An evaluator that calculates the edit distance between JSON strings. | |
This evaluator computes a normalized Damerau-Levenshtein distance between two JSON strings | |
after parsing them and converting them to a canonical format (i.e., whitespace and key order are normalized). | |
It can be customized with alternative distance and canonicalization functions. | |
Args: | |
string_distance (Optional[Callable[[str, str], float]]): A callable that computes the distance between two strings. | |
If not provided, a Damerau-Levenshtein distance from the `rapidfuzz` package will be used. | |
canonicalize (Optional[Callable[[Any], Any]]): A callable that converts a parsed JSON object into its canonical string form. | |
If not provided, the default behavior is to serialize the JSON with sorted keys and no extra whitespace. | |
**kwargs (Any): Additional keyword arguments. | |
Attributes: | |
_string_distance (Callable[[str, str], float]): The internal distance computation function. | |
_canonicalize (Callable[[Any], Any]): The internal canonicalization function. | |
Examples: | |
>>> evaluator = JsonEditDistanceEvaluator() | |
>>> result = evaluator.evaluate_strings(prediction='{"a": 1, "b": 2}', reference='{"a": 1, "b": 3}') | |
>>> assert result["score"] is not None | |
Raises: | |
ImportError: If `rapidfuzz` is not installed and no alternative `string_distance` function is provided. | |
""" # noqa: E501 | |
def __init__( | |
self, | |
string_distance: Optional[Callable[[str, str], float]] = None, | |
canonicalize: Optional[Callable[[Any], Any]] = None, | |
**kwargs: Any, | |
) -> None: | |
super().__init__() | |
if string_distance is not None: | |
self._string_distance = string_distance | |
else: | |
try: | |
from rapidfuzz import distance as rfd | |
except ImportError: | |
raise ImportError( | |
"The default string_distance operator for the " | |
" JsonEditDistanceEvaluator requires installation of " | |
"the rapidfuzz package. " | |
"Please install it with `pip install rapidfuzz`." | |
) | |
self._string_distance = rfd.DamerauLevenshtein.normalized_distance | |
if canonicalize is not None: | |
self._canonicalize = canonicalize | |
else: | |
self._canonicalize = lambda x: json.dumps( | |
x, | |
separators=(",", ":"), | |
sort_keys=True, # eliminate whitespace | |
) | |
def requires_input(self) -> bool: | |
return False | |
def requires_reference(self) -> bool: | |
return True | |
def evaluation_name(self) -> str: | |
return "json_edit_distance" | |
def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: | |
if isinstance(node, str): | |
return parse_json_markdown(node) | |
return node | |
def _evaluate_strings( | |
self, | |
prediction: str, | |
input: Optional[str] = None, | |
reference: Optional[str] = None, | |
**kwargs: Any, | |
) -> dict: | |
parsed = self._canonicalize(self._parse_json(prediction)) | |
label = self._canonicalize(self._parse_json(reference)) | |
distance = self._string_distance(parsed, label) | |
return {"score": distance} | |