Spaces:
Runtime error
Runtime error
import warnings | |
from abc import ABC | |
from typing import Any, Dict, Optional, Tuple | |
from langchain_core.chat_history import ( | |
BaseChatMessageHistory, | |
InMemoryChatMessageHistory, | |
) | |
from langchain_core.memory import BaseMemory | |
from langchain_core.messages import AIMessage, HumanMessage | |
from langchain_core.pydantic_v1 import Field | |
from langchain.memory.utils import get_prompt_input_key | |
class BaseChatMemory(BaseMemory, ABC): | |
"""Abstract base class for chat memory.""" | |
chat_memory: BaseChatMessageHistory = Field( | |
default_factory=InMemoryChatMessageHistory | |
) | |
output_key: Optional[str] = None | |
input_key: Optional[str] = None | |
return_messages: bool = False | |
def _get_input_output( | |
self, inputs: Dict[str, Any], outputs: Dict[str, str] | |
) -> Tuple[str, str]: | |
if self.input_key is None: | |
prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) | |
else: | |
prompt_input_key = self.input_key | |
if self.output_key is None: | |
if len(outputs) == 1: | |
output_key = list(outputs.keys())[0] | |
elif "output" in outputs: | |
output_key = "output" | |
warnings.warn( | |
f"'{self.__class__.__name__}' got multiple output keys:" | |
f" {outputs.keys()}. The default 'output' key is being used." | |
f" If this is not desired, please manually set 'output_key'." | |
) | |
else: | |
raise ValueError( | |
f"Got multiple output keys: {outputs.keys()}, cannot " | |
f"determine which to store in memory. Please set the " | |
f"'output_key' explicitly." | |
) | |
else: | |
output_key = self.output_key | |
return inputs[prompt_input_key], outputs[output_key] | |
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
"""Save context from this conversation to buffer.""" | |
input_str, output_str = self._get_input_output(inputs, outputs) | |
self.chat_memory.add_messages( | |
[HumanMessage(content=input_str), AIMessage(content=output_str)] | |
) | |
async def asave_context( | |
self, inputs: Dict[str, Any], outputs: Dict[str, str] | |
) -> None: | |
"""Save context from this conversation to buffer.""" | |
input_str, output_str = self._get_input_output(inputs, outputs) | |
await self.chat_memory.aadd_messages( | |
[HumanMessage(content=input_str), AIMessage(content=output_str)] | |
) | |
def clear(self) -> None: | |
"""Clear memory contents.""" | |
self.chat_memory.clear() | |
async def aclear(self) -> None: | |
"""Clear memory contents.""" | |
await self.chat_memory.aclear() | |