File size: 29,856 Bytes
0e92f07
 
 
 
 
 
 
1139524
 
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
 
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92f07
1139524
 
0e92f07
 
 
 
 
 
 
 
 
 
 
1139524
0e92f07
1139524
 
0e92f07
1139524
 
 
 
 
0e92f07
 
 
 
 
 
 
 
1139524
 
 
 
 
 
 
 
 
 
0e92f07
 
 
 
1139524
 
 
0e92f07
 
 
1139524
0e92f07
 
 
 
 
 
 
 
 
1139524
0e92f07
 
 
 
 
 
1139524
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139524
 
0e92f07
 
 
 
 
 
 
 
 
 
1139524
0e92f07
1139524
0e92f07
1139524
0e92f07
 
1139524
 
0e92f07
 
 
1139524
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
1139524
 
0e92f07
1139524
0e92f07
 
 
 
 
 
 
1139524
0e92f07
 
 
 
 
 
1139524
 
0e92f07
 
 
 
 
 
 
 
1139524
 
0e92f07
76f040f
 
0e92f07
76f040f
 
0e92f07
76f040f
 
0e92f07
76f040f
 
0e92f07
76f040f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import psutil
import re
import gc
import random
from typing import List, Dict, Any

# Initialize logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

# List of memory-optimized models
MEMORY_OPTIMIZED_MODELS = [
    "gpt2",  # ~500MB
    "distilgpt2",  # ~250MB
    "microsoft/DialoGPT-small",  # ~250MB
    "huggingface/CodeBERTa-small-v1",  # Code tasks
]

# Singleton state
_generator_instance = None

# Enhanced pattern matching for comprehensive test case generation
REQUIREMENT_PATTERNS = {
    'authentication': {
        'keywords': ['login', 'authentication', 'signin', 'sign in', 'password', 'username', 'credential', 'auth'],
        'priority': 'High',
        'category': 'Security'
    },
    'authorization': {
        'keywords': ['permission', 'role', 'access', 'privilege', 'authorize', 'admin', 'user level'],
        'priority': 'High', 
        'category': 'Security'
    },
    'data_validation': {
        'keywords': ['validate', 'validation', 'input', 'format', 'check', 'verify', 'constraint'],
        'priority': 'High',
        'category': 'Functional'
    },
    'database': {
        'keywords': ['database', 'db', 'store', 'save', 'persist', 'record', 'data storage', 'crud'],
        'priority': 'Medium',
        'category': 'Functional'
    },
    'performance': {
        'keywords': ['performance', 'speed', 'time', 'response', 'load', 'concurrent', 'scalability'],
        'priority': 'Medium',
        'category': 'Performance'
    },
    'ui_interface': {
        'keywords': ['interface', 'ui', 'user interface', 'display', 'screen', 'form', 'button', 'menu'],
        'priority': 'Medium',
        'category': 'UI/UX'
    },
    'api': {
        'keywords': ['api', 'endpoint', 'service', 'request', 'response', 'rest', 'http'],
        'priority': 'High',
        'category': 'Integration'
    },
    'error_handling': {
        'keywords': ['error', 'exception', 'failure', 'invalid', 'incorrect', 'wrong'],
        'priority': 'High',
        'category': 'Error Handling'
    },
    'reporting': {
        'keywords': ['report', 'export', 'generate', 'analytics', 'dashboard', 'chart'],
        'priority': 'Medium',
        'category': 'Reporting'
    },
    'security': {
        'keywords': ['security', 'encrypt', 'secure', 'ssl', 'https', 'token', 'session'],
        'priority': 'High',
        'category': 'Security'
    }
}

def get_optimal_model_for_memory():
    """Select the best model based on available memory."""
    available_memory = psutil.virtual_memory().available / (1024 * 1024)  # MB
    logger.info(f"Available memory: {available_memory:.1f}MB")

    if available_memory < 300:
        return None  # Use template fallback
    elif available_memory < 600:
        return "microsoft/DialoGPT-small"
    else:
        return "distilgpt2"

def load_model_with_memory_optimization(model_name):
    """Load model with low memory settings."""
    try:
        logger.info(f"Loading {model_name} with memory optimizations...")

        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float16,
            device_map="cpu",
            low_cpu_mem_usage=True,
            use_cache=False,
        )

        model.eval()
        model.gradient_checkpointing_enable()
        logger.info(f"✅ Model {model_name} loaded successfully")
        return tokenizer, model

    except Exception as e:
        logger.error(f"❌ Failed to load model {model_name}: {e}")
        return None, None

def analyze_requirements(text: str) -> Dict[str, Any]:
    """Analyze requirements text to identify patterns and generate appropriate test cases"""
    text_lower = text.lower()
    detected_patterns = {}
    
    for pattern_name, pattern_info in REQUIREMENT_PATTERNS.items():
        matches = []
        for keyword in pattern_info['keywords']:
            if keyword in text_lower:
                # Find context around the keyword
                pattern = rf'.{{0,50}}{re.escape(keyword)}.{{0,50}}'
                context_matches = re.findall(pattern, text_lower, re.IGNORECASE)
                matches.extend(context_matches)
        
        if matches:
            detected_patterns[pattern_name] = {
                'matches': matches[:3],  # Limit to 3 matches
                'priority': pattern_info['priority'],
                'category': pattern_info['category']
            }
    
    return detected_patterns

def generate_authentication_tests(matches: List[str]) -> List[Dict]:
    """Generate comprehensive authentication test cases"""
    base_tests = [
        {
            "title": "Valid User Login",
            "description": "Verify that users can successfully log in with valid credentials",
            "preconditions": ["User account exists", "Application is accessible"],
            "steps": [
                "Navigate to login page",
                "Enter valid username",
                "Enter valid password", 
                "Click login button"
            ],
            "expected": "User is successfully authenticated and redirected to dashboard/home page",
            "postconditions": ["User session is created", "User is logged in"],
            "test_data": "Valid username: testuser@example.com, Valid password: Test@123"
        },
        {
            "title": "Invalid Username Login",
            "description": "Verify that login fails with invalid username",
            "preconditions": ["Application is accessible"],
            "steps": [
                "Navigate to login page",
                "Enter invalid/non-existent username",
                "Enter valid password format",
                "Click login button"
            ],
            "expected": "Login fails with appropriate error message 'Invalid credentials'",
            "postconditions": ["User remains on login page", "Account security maintained"],
            "test_data": "Valid username: testuser@example.com, Invalid password: WrongPass123"
        },
        {
            "title": "Empty Fields Login Attempt",
            "description": "Verify validation when login attempted with empty fields",
            "preconditions": ["Application is accessible"],
            "steps": [
                "Navigate to login page",
                "Leave username field empty",
                "Leave password field empty",
                "Click login button"
            ],
            "expected": "Validation errors displayed for required fields",
            "postconditions": ["User remains on login page", "Form validation active"],
            "test_data": "Username: (empty), Password: (empty)"
        },
        {
            "title": "SQL Injection Attack Prevention",
            "description": "Verify that login form prevents SQL injection attacks",
            "preconditions": ["Application is accessible"],
            "steps": [
                "Navigate to login page",
                "Enter SQL injection payload in username field",
                "Enter any password",
                "Click login button"
            ],
            "expected": "Login fails safely without database compromise or error exposure",
            "postconditions": ["System security maintained", "No unauthorized access"],
            "test_data": "Username: admin'; DROP TABLE users; --, Password: anypass"
        }
    ]
    
    return base_tests

def generate_data_validation_tests(matches: List[str]) -> List[Dict]:
    """Generate comprehensive data validation test cases"""
    return [
        {
            "title": "Valid Data Input Validation",
            "description": "Verify system accepts valid data formats correctly",
            "preconditions": ["Form/API endpoint is accessible", "User has appropriate permissions"],
            "steps": [
                "Access the input form/endpoint",
                "Enter data in valid format",
                "Submit the form/request",
                "Verify data is accepted"
            ],
            "expected": "Data is accepted and processed successfully with confirmation message",
            "postconditions": ["Data is stored correctly", "User receives success feedback"],
            "test_data": "Valid email: user@domain.com, Valid phone: +1-234-567-8900"
        },
        {
            "title": "Invalid Data Format Rejection",
            "description": "Verify system rejects invalid data formats",
            "preconditions": ["Form/API endpoint is accessible"],
            "steps": [
                "Access the input form/endpoint",
                "Enter data in invalid format",
                "Submit the form/request",
                "Verify validation error is shown"
            ],
            "expected": "System rejects invalid data with clear error message",
            "postconditions": ["Invalid data is not stored", "User guided to correct format"],
            "test_data": "Invalid email: notanemail, Invalid phone: 123-abc-defg"
        },
        {
            "title": "Boundary Value Testing",
            "description": "Test data validation at boundary values",
            "preconditions": ["System has defined data length/value limits"],
            "steps": [
                "Test with minimum allowed value",
                "Test with maximum allowed value", 
                "Test with value just below minimum",
                "Test with value just above maximum"
            ],
            "expected": "Min/max values accepted, out-of-range values rejected appropriately",
            "postconditions": ["Boundary validation working correctly"],
            "test_data": "Min: 1, Max: 100, Below: 0, Above: 101"
        },
        {
            "title": "Special Characters Handling",
            "description": "Verify proper handling of special characters in input",
            "preconditions": ["Input fields accept text data"],
            "steps": [
                "Enter text with special characters (!@#$%^&*)",
                "Enter text with unicode characters (émañ)",
                "Enter text with HTML tags (<script>)",
                "Submit and verify handling"
            ],
            "expected": "Special characters handled safely without breaking functionality",
            "postconditions": ["Data integrity maintained", "No XSS vulnerabilities"],
            "test_data": "Special: Test!@#$, Unicode: Café, HTML: <b>test</b>"
        }
    ]

def generate_performance_tests(matches: List[str]) -> List[Dict]:
    """Generate comprehensive performance test cases"""
    return [
        {
            "title": "Response Time Under Normal Load",
            "description": "Verify system response time meets requirements under normal usage",
            "preconditions": ["System is running in production-like environment", "Normal user load"],
            "steps": [
                "Execute typical user operations",
                "Measure response times for key functions",
                "Record average response times",
                "Compare against SLA requirements"
            ],
            "expected": "All operations complete within specified time limits (e.g., <3 seconds)",
            "postconditions": ["Performance baseline established"],
            "test_data": "Target: <3 sec for page loads, <1 sec for API calls"
        },
        {
            "title": "Load Testing with Multiple Users",
            "description": "Test system performance with concurrent users",
            "preconditions": ["Load testing tools configured", "Test environment ready"],
            "steps": [
                "Simulate 100 concurrent users",
                "Execute common user workflows",
                "Monitor system resources (CPU, memory)",
                "Measure response times and error rates"
            ],
            "expected": "System maintains acceptable performance with <5% error rate",
            "postconditions": ["Load capacity documented", "Performance bottlenecks identified"],
            "test_data": "Concurrent users: 100, Duration: 30 minutes"
        },
        {
            "title": "Memory Usage Optimization",
            "description": "Verify system memory usage remains within acceptable limits",
            "preconditions": ["System monitoring tools available"],
            "steps": [
                "Monitor memory usage during normal operations",
                "Execute memory-intensive operations",
                "Check for memory leaks over extended periods",
                "Verify garbage collection effectiveness"
            ],
            "expected": "Memory usage stays within allocated limits, no memory leaks detected",
            "postconditions": ["Memory optimization verified"],
            "test_data": "Memory limit: 512MB, Test duration: 2 hours"
        }
    ]

def generate_api_tests(matches: List[str]) -> List[Dict]:
    """Generate comprehensive API test cases"""
    return [
        {
            "title": "Valid API Request Processing",
            "description": "Verify API correctly processes valid requests",
            "preconditions": ["API endpoint is accessible", "Valid authentication token available"],
            "steps": [
                "Send GET/POST request with valid parameters",
                "Include proper authentication headers",
                "Verify response status code",
                "Validate response data structure"
            ],
            "expected": "API returns 200 OK with expected data format",
            "postconditions": ["Request logged", "Data processed correctly"],
            "test_data": "Endpoint: /api/users, Method: GET, Auth: Bearer token123"
        },
        {
            "title": "Invalid API Request Handling",
            "description": "Verify API properly handles invalid requests",
            "preconditions": ["API endpoint is accessible"],
            "steps": [
                "Send request with invalid parameters",
                "Send request with missing required fields",
                "Send malformed JSON in request body",
                "Verify error responses"
            ],
            "expected": "API returns appropriate error codes (400, 422) with descriptive messages",
            "postconditions": ["Errors logged appropriately", "System remains stable"],
            "test_data": "Invalid param: user_id='invalid', Missing: required field 'name'"
        },
        {
            "title": "API Authentication and Authorization",
            "description": "Test API security and access controls",
            "preconditions": ["API requires authentication"],
            "steps": [
                "Send request without authentication token",
                "Send request with invalid/expired token",
                "Send request with valid token but insufficient permissions",
                "Verify security responses"
            ],
            "expected": "Unauthorized requests return 401/403 with security maintained",
            "postconditions": ["Security audit trail created"],
            "test_data": "Valid token: Bearer abc123, Invalid: Bearer expired456"
        }
    ]

def generate_error_handling_tests(matches: List[str]) -> List[Dict]:
    """Generate comprehensive error handling test cases"""
    return [
        {
            "title": "Graceful Error Message Display",
            "description": "Verify system displays user-friendly error messages",
            "preconditions": ["Error conditions can be triggered"],
            "steps": [
                "Trigger various error conditions",
                "Verify error messages are displayed",
                "Check that messages are user-friendly",
                "Ensure no technical details exposed"
            ],
            "expected": "Clear, helpful error messages shown without exposing system internals",
            "postconditions": ["User experience maintained during errors"],
            "test_data": "Error scenarios: network timeout, invalid input, server error"
        },
        {
            "title": "System Recovery After Errors",
            "description": "Test system's ability to recover from error states",
            "preconditions": ["System can be put into error state"],
            "steps": [
                "Trigger system error condition",
                "Verify error is handled gracefully",
                "Attempt normal operations after error",
                "Verify system functionality restored"
            ],
            "expected": "System recovers fully and continues normal operation",
            "postconditions": ["System stability maintained", "No data corruption"],
            "test_data": "Recovery scenarios: database disconnect, memory overflow"
        }
    ]

def generate_template_based_test_cases(srs_text: str) -> List[Dict]:
    """Generate comprehensive template-based test cases using pattern analysis"""
    detected_patterns = analyze_requirements(srs_text)
    all_test_cases = []
    
    # Generate specific test cases based on detected patterns
    for pattern_name, pattern_data in detected_patterns.items():
        if pattern_name == 'authentication':
            tests = generate_authentication_tests(pattern_data['matches'])
        elif pattern_name == 'data_validation':
            tests = generate_data_validation_tests(pattern_data['matches'])
        elif pattern_name == 'performance':
            tests = generate_performance_tests(pattern_data['matches'])
        elif pattern_name == 'api':
            tests = generate_api_tests(pattern_data['matches'])
        elif pattern_name == 'error_handling':
            tests = generate_error_handling_tests(pattern_data['matches'])
        else:
            # Generate generic tests for other patterns
            tests = generate_generic_tests(pattern_name, pattern_data)
        
        # Add pattern-specific metadata to each test
        for i, test in enumerate(tests):
            test['id'] = f"TC_{pattern_name.upper()}_{i+1:03d}"
            test['priority'] = pattern_data['priority']
            test['category'] = pattern_data['category']
            
        all_test_cases.extend(tests)
    
    # If no specific patterns detected, generate generic functional tests
    if not all_test_cases:
        all_test_cases = generate_generic_functional_tests(srs_text)
    
    # Limit to reasonable number of test cases
    return all_test_cases[:12]

def generate_generic_tests(pattern_name: str, pattern_data: Dict) -> List[Dict]:
    """Generate generic test cases for unspecified patterns"""
    return [
        {
            "title": f"{pattern_name.replace('_', ' ').title()} - Positive Test",
            "description": f"Verify {pattern_name.replace('_', ' ')} functionality works correctly",
            "preconditions": ["System is accessible", "User has required permissions"],
            "steps": [
                f"Access {pattern_name.replace('_', ' ')} feature",
                "Perform valid operation",
                "Verify expected behavior"
            ],
            "expected": f"{pattern_name.replace('_', ' ').title()} functionality works as expected",
            "postconditions": ["System state is valid"],
            "test_data": "Valid test data as per requirements"
        },
        {
            "title": f"{pattern_name.replace('_', ' ').title()} - Negative Test", 
            "description": f"Verify {pattern_name.replace('_', ' ')} handles invalid scenarios",
            "preconditions": ["System is accessible"],
            "steps": [
                f"Access {pattern_name.replace('_', ' ')} feature",
                "Perform invalid operation",
                "Verify error handling"
            ],
            "expected": f"Invalid {pattern_name.replace('_', ' ')} operation handled gracefully",
            "postconditions": ["System remains stable"],
            "test_data": "Invalid test data to trigger error conditions"
        }
    ]

def generate_generic_functional_tests(srs_text: str) -> List[Dict]:
    """Generate generic functional test cases when no specific patterns are detected"""
    return [
        {
            "id": "TC_FUNC_001",
            "title": "Basic System Functionality",
            "priority": "High",
            "category": "Functional",
            "description": "Verify core system functionality works as specified",
            "preconditions": ["System is deployed and accessible", "Test environment is configured"],
            "steps": [
                "Access the system/application",
                "Navigate through main features",
                "Execute primary use cases",
                "Verify all functions work correctly"
            ],
            "expected": "All core functionality operates according to requirements",
            "postconditions": ["System demonstrates full functionality"],
            "test_data": "Standard test data set as defined in requirements"
        },
        {
            "id": "TC_FUNC_002",
            "title": "Input Validation and Processing",
            "priority": "High", 
            "category": "Functional",
            "description": "Test system's ability to validate and process various inputs",
            "preconditions": ["System accepts user input"],
            "steps": [
                "Enter valid data in all input fields",
                "Submit data and verify processing",
                "Enter invalid data and verify rejection",
                "Test boundary conditions"
            ],
            "expected": "Valid data processed correctly, invalid data rejected with appropriate messages",
            "postconditions": ["Data integrity maintained"],
            "test_data": "Mix of valid, invalid, and boundary test data"
        },
        {
            "id": "TC_FUNC_003",
            "title": "System Integration and Workflow",
            "priority": "Medium",
            "category": "Integration", 
            "description": "Verify end-to-end workflow and system integration",
            "preconditions": ["All system components are integrated"],
            "steps": [
                "Execute complete business workflow",
                "Verify data flow between components",
                "Test system integration points",
                "Validate end-to-end functionality"
            ],
            "expected": "Complete workflow executes successfully with proper data flow",
            "postconditions": ["Workflow completion confirmed"],
            "test_data": "Complete dataset for end-to-end testing"
        }
    ]

def parse_generated_test_cases(generated_text: str) -> List[Dict]:
    """Parse AI-generated text into structured test cases"""
    lines = generated_text.split('\n')
    test_cases = []
    current_case = {}
    case_counter = 1

    for line in lines:
        line = line.strip()
        if line.startswith(('1.', '2.', '3.', 'TC', 'Test')):
            if current_case:
                test_cases.append(current_case)
            current_case = {
                "id": f"TC_AI_{case_counter:03d}",
                "title": line,
                "priority": "Medium",
                "category": "Functional",
                "description": line,
                "preconditions": ["System is accessible"],
                "steps": ["Execute the test procedure"],
                "expected": "Test should pass according to requirements",
                "postconditions": ["System state verified"],
                "test_data": "As specified in requirements"
            }
            case_counter += 1

    if current_case:
        test_cases.append(current_case)

    if not test_cases:
        return [{
            "id": "TC_AI_001",
            "title": "AI Generated Test Case",
            "priority": "Medium",
            "category": "Functional", 
            "description": "Auto-generated test case based on AI analysis",
            "preconditions": ["System meets specified requirements"],
            "steps": ["Review requirements", "Execute test procedure", "Verify results"],
            "expected": "Requirements should be met as specified",
            "postconditions": ["Test completion verified"],
            "test_data": "Test data as defined in requirements"
        }]

    return test_cases

def generate_with_ai_model(srs_text: str, tokenizer, model) -> List[Dict]:
    """Generate test cases using AI model"""
    max_input_length = 300
    if len(srs_text) > max_input_length:
        srs_text = srs_text[:max_input_length]

    prompt = f"""Generate comprehensive test cases for this software requirement:
{srs_text}

Test Cases:
1."""

    try:
        inputs = tokenizer.encode(
            prompt,
            return_tensors="pt",
            max_length=200,
            truncation=True
        )

        with torch.no_grad():
            outputs = model.generate(
                inputs,
                max_new_tokens=150,
                num_return_sequences=1,
                temperature=0.7,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id,
                use_cache=False,
            )

        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        del inputs, outputs
        torch.cuda.empty_cache() if torch.cuda.is_available() else None
        return parse_generated_test_cases(generated_text)

    except Exception as e:
        logger.error(f"❌ AI generation failed: {e}")
        raise

def generate_with_fallback(srs_text: str):
    """Generate test cases with AI model fallback to enhanced templates"""
    model_name = get_optimal_model_for_memory()

    if model_name:
        tokenizer, model = load_model_with_memory_optimization(model_name)
        if tokenizer and model:
            try:
                test_cases = generate_with_ai_model(srs_text, tokenizer, model)
                reason = get_algorithm_reason(model_name)
                return test_cases, model_name, "transformer (causal LM)", reason
            except Exception as e:
                logger.warning(f"AI generation failed: {e}, falling back to enhanced templates")

    logger.info("⚠️ Using enhanced template-based generation")
    test_cases = generate_template_based_test_cases(srs_text)
    return test_cases, "Enhanced Template-Based Generator", "pattern-matching + rule-based", "Enhanced template generation with comprehensive pattern analysis and structured test case creation"

# ✅ Function exposed to app.py
def generate_test_cases(srs_text: str) -> List[Dict]:
    """Main function to generate test cases"""
    return generate_with_fallback(srs_text)[0]

def get_generator():
    """Get generator instance"""
    global _generator_instance
    if _generator_instance is None:
        class Generator:
            def __init__(self):
                self.model_name = get_optimal_model_for_memory()
                self.tokenizer = None
                self.model = None
                if self.model_name:
                    self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)

            def get_model_info(self):
                mem = psutil.Process().memory_info().rss / 1024 / 1024
                return {
                    "model_name": self.model_name if self.model_name else "Enhanced Template-Based Generator",
                    "status": "loaded" if self.model else "enhanced_template_mode",
                    "memory_usage": f"{mem:.1f}MB",
                    "optimization": "low_memory_enhanced"
                }

        _generator_instance = Generator()

    return _generator_instance

def monitor_memory():
    """Monitor and manage memory usage"""
    mem = psutil.Process().memory_info().rss / 1024 / 1024
    logger.info(f"Memory usage: {mem:.1f}MB")
    if mem > 450:
        gc.collect()
        logger.info("Memory cleanup triggered")

def generate_test_cases_and_info(input_text: str) -> Dict[str, Any]:
    """Generate test cases with full information"""
    test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
    return {
        "model": model_name,
        "algorithm": algorithm_used,
        "reason": reason,
        "test_cases": test_cases
    }

def get_algorithm_reason(model_name: str) -> str:
    """Get explanation for algorithm selection"""
    if model_name == "microsoft/DialoGPT-small":
        return ("Selected due to low memory availability; DialoGPT-small provides "
                "conversational understanding in limited memory environments with enhanced context processing.")
    elif model_name == "distilgpt2":
        return ("Selected for its balance between performance and low memory usage. "
                "Ideal for small environments needing causal language modeling with good text generation quality.")
    elif model_name == "gpt2":
        return ("Chosen for general-purpose text generation with moderate memory headroom "
                "and superior language understanding capabilities.")
    elif model_name is None:
        return ("Enhanced template-based generation selected due to memory constraints. "
                "Uses comprehensive pattern matching, requirement analysis, and structured test case templates for robust test coverage.")
    else:
        return ("Model selected based on optimal tradeoff between memory usage, language generation capability, "
                "and test case quality requirements.")