File size: 10,620 Bytes
8d3e73e
 
 
 
 
 
 
 
8a7a9dd
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7a9dd
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7a9dd
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7a9dd
8d3e73e
 
 
 
8a7a9dd
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7a9dd
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7a9dd
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9eab93
8d3e73e
 
 
 
 
f9eab93
8d3e73e
 
 
f9eab93
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import sys
from pathlib import Path

import numpy as np
from joblib import Parallel, delayed

from neus_v.automaton.video_automaton import VideoAutomaton
from neus_v.model_checking.stormpy import StormModelChecker
from neus_v.veval.parse import parse_tl_formula, parse_until_to_next_frame
from neus_v.video.frame import VideoFrame
from neus_v.video.read_video import read_video


def create_frame_windows(frames: list, window_size: int) -> list[list]:
    """Create non-overlapping windows of frames, with remainder in last window.

    Args:
        frames: List of frames
        window_size: Size of each window

    Returns:
        List of frame windows
    """
    windows = []
    for i in range(0, len(frames), window_size):
        windows.append(frames[i : i + window_size])
    return windows


def evaluate_video(
    vision_language_model,
    confidence_as_token_probability: bool,
    video_path: Path | str,
    proposition_set: list,
    tl_spec: str,
    parallel_inference: bool = False,
    threshold: float = 0.1,
    num_of_frame_in_sequence: int = 1,
) -> dict:
    """Evaluate a video using the given vision language model."""
    output_log = {
        "specification": None,
        "propositions": None,
        "probability": None,
        "min_probability": None,
        "max_probability": None,
        "propositions_avg_probability": {},
    }

    if isinstance(video_path, str):
        video_path = Path(video_path)
    video = read_video(video_path=video_path)

    # TODO: if there's F in the tl_spec
    ltl_formula = parse_tl_formula(tl_spec)
    ltl_formula = parse_until_to_next_frame(ltl_formula)

    video_automaton = VideoAutomaton(include_initial_state=True)

    video_automaton.set_up(proposition_set=proposition_set)
    model_checker = StormModelChecker(
        proposition_set=proposition_set,
        ltl_formula=ltl_formula,
    )

    proposition_probability_record = {}
    for proposition in proposition_set:
        proposition_probability_record[proposition] = []
    if model_checker.validate_tl_specification(ltl_formula):
        frame_count = 0
        all_frames: list[np.ndarray] = video.get_all_frames_of_video(
            return_format="ndarray",
            desired_interval_in_sec=1,
        )
        try:
            # for frame_img in all_frames:

            def process_frame(frame_img: np.ndarray, frame_count: int):
                sys.stdout.write(f"\rProcessing frame: {frame_count+1}/{len(all_frames)} ")
                sys.stdout.flush()
                object_of_interest = {}
                for proposition in proposition_set:
                    detected_object = vision_language_model.detect(
                        frame_img=frame_img,
                        scene_description=proposition,
                        confidence_as_token_probability=confidence_as_token_probability,
                        threshold=threshold,
                    )
                    object_of_interest[proposition] = detected_object
                    # proposition_probability_record.get(proposition).append(
                    #     detected_object.probability
                    # )
                video_frame = VideoFrame(
                    frame_idx=frame_count,
                    timestamp=None,
                    frame_image=frame_img,
                    object_of_interest=object_of_interest,
                )
                return video_frame, object_of_interest

            if parallel_inference:
                frame_windows = create_frame_windows(frames=all_frames, window_size=num_of_frame_in_sequence)
                results = Parallel(n_jobs=len(all_frames))(
                    delayed(process_frame)(frame_img, i) for i, frame_img in enumerate(all_frames)
                )
            else:
                frame_windows = create_frame_windows(frames=all_frames, window_size=num_of_frame_in_sequence)
                results = [process_frame(frame_img, i) for i, frame_img in enumerate(all_frames)]

            for video_frame, object_of_interest in results:
                video_automaton.add_frame(frame=video_frame)
                for proposition, detected_object in object_of_interest.items():
                    proposition_probability_record[proposition].append(detected_object.probability)

            video_automaton.add_terminal_state(add_with_terminal_label=True)
            sys.stdout.write("\n")  # Move to the next line after processing all frames
            result = model_checker.check_automaton(
                states=video_automaton.states,
                transitions=video_automaton.transitions,
                model_type="dtmc",
                use_filter=True,
            )
            output_log["specification"] = tl_spec
            output_log["propositions"] = proposition_set
            output_log["probability"] = round(float(str(result)), 6)
            output_log["min_probability"] = round(float(str(result.min)), 6)
            output_log["max_probability"] = round(float(str(result.max)), 6)
            for (
                proposition,
                probabilities,
            ) in proposition_probability_record.items():
                avg_probability = sum(probabilities) / len(probabilities)
                output_log["propositions_avg_probability"][proposition] = round(avg_probability, 3)
        except Exception as e:  # noqa: BLE001
            # print(f"\nError processing frame {frame_count}: {e}")
            import traceback

            print(f"\nError processing frame {frame_count}: {e}")
            traceback.print_exc()

    return output_log


def evaluate_video_with_sequence_of_images(
    vision_language_model,
    confidence_as_token_probability: bool,
    video_path: Path | str,
    proposition_set: list,
    tl_spec: str,
    parallel_inference: bool = False,
    num_of_frame_in_sequence: int = 3,
    threshold: float = 0.1,
) -> dict:
    """Evaluate a video using the given vision language model."""
    output_log = {
        "specification": None,
        "propositions": None,
        "probability": None,
        "min_probability": None,
        "max_probability": None,
        "propositions_avg_probability": {},
    }

    if isinstance(video_path, str):
        video_path = Path(video_path)
    video = read_video(video_path=video_path)

    # TODO: if there's F in the tl_spec
    ltl_formula = parse_tl_formula(tl_spec)
    ltl_formula = parse_until_to_next_frame(ltl_formula)

    video_automaton = VideoAutomaton(include_initial_state=True)

    video_automaton.set_up(proposition_set=proposition_set)
    model_checker = StormModelChecker(
        proposition_set=proposition_set,
        ltl_formula=ltl_formula,
    )

    proposition_probability_record = {}
    for proposition in proposition_set:
        proposition_probability_record[proposition] = []
    if model_checker.validate_tl_specification(ltl_formula):
        frame_count = 0
        all_frames: list[np.ndarray] = video.get_all_frames_of_video(
            return_format="ndarray",
            desired_interval_in_sec=0.5,
        )
        try:
            # for frame_img in all_frames:
            def process_frame(sequence_of_frames: list[np.ndarray], frame_count: int):
                sys.stdout.write(f"\rProcessing frame window: {frame_count+1}/{len(frame_windows)} ")
                sys.stdout.flush()
                object_of_interest = {}
                for proposition in proposition_set:
                    detected_object = vision_language_model.detect(
                        seq_of_frames=sequence_of_frames,
                        scene_description=proposition,
                        # confidence_as_token_probability=confidence_as_token_probability,
                        threshold=threshold,
                    )
                    object_of_interest[proposition] = detected_object
                    # proposition_probability_record.get(proposition).append(
                    #     detected_object.probability
                    # )
                    print(f"{proposition}: {detected_object.probability}")
                video_frame = VideoFrame(
                    frame_idx=frame_count,
                    timestamp=None,
                    frame_image=sequence_of_frames,
                    object_of_interest=object_of_interest,
                )
                return video_frame, object_of_interest

            if parallel_inference:
                frame_windows = create_frame_windows(frames=all_frames, window_size=num_of_frame_in_sequence)
                results = Parallel(n_jobs=len(frame_windows))(
                    delayed(process_frame)(frame_img, i) for i, frame_img in enumerate(frame_windows)
                )
            else:
                frame_windows = create_frame_windows(frames=all_frames, window_size=num_of_frame_in_sequence)
                results = [process_frame(sequence_of_frames, i) for i, sequence_of_frames in enumerate(frame_windows)]

            for video_frame, object_of_interest in results:
                video_automaton.add_frame(frame=video_frame)
                for proposition, detected_object in object_of_interest.items():
                    proposition_probability_record[proposition].append(detected_object.probability)

            video_automaton.add_terminal_state(add_with_terminal_label=False)
            sys.stdout.write("\n")  # Move to the next line after processing all frames
            result = model_checker.check_automaton(
                states=video_automaton.states,
                transitions=video_automaton.transitions,
                model_type="dtmc",
                use_filter=False,
            )
            output_log["specification"] = tl_spec
            output_log["propositions"] = proposition_set
            output_log["probability"] = round(float(str(result.at(0))), 6)
            output_log["min_probability"] = round(float(str(result.min)), 6)
            output_log["max_probability"] = round(float(str(result.max)), 6)
            for (
                proposition,
                probabilities,
            ) in proposition_probability_record.items():
                avg_probability = sum(probabilities) / len(probabilities)
                output_log["propositions_avg_probability"][proposition] = round(avg_probability, 3)
        except Exception as e:  # noqa: BLE001
            # print(f"\nError processing frame {frame_count}: {e}")
            import traceback

            print(f"\nError processing frame {frame_count}: {e}")
            traceback.print_exc()

    return output_log