Spaces:
Sleeping
Sleeping
File size: 10,816 Bytes
8d3e73e 32371f9 8d3e73e 32371f9 8d3e73e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import enum
import logging
import uuid
from dataclasses import dataclass, field
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
class VideoFormat(enum.Enum):
"""Status Enum for the CV API."""
MP4 = "mp4"
LIST_OF_ARRAY = "list_of_array"
@dataclass
class VideoInfo:
"""Represents information about a video file."""
format: VideoFormat
frame_width: int
frame_height: int
original_frame_count: int
video_id: uuid.UUID = field(default_factory=uuid.uuid4)
video_path: str | None = None
processed_fps: float | None = None
processed_frame_count: int = 1
original_fps: float | None = None
class Video:
"""vflow's Video Object."""
def __init__(
self,
read_format: VideoFormat,
video_path: str | Path | None = None,
sequence_of_image: list[np.ndarray] | None = None,
) -> None:
"""Video Frame Processor.
Args:
video_path (str | Path): Path to video file.
read_format (VideoFormat): Format to read the video in.
sequence_of_image (list[np.ndarray] | None): List of image arrays
for processing.
"""
self._video_path = video_path
self._read_format = read_format
self.video_info = None
if sequence_of_image:
self.all_frames = sequence_of_image
if isinstance(sequence_of_image[0], list):
self.all_frames = sequence_of_image[0]
self.import_video(str(video_path))
self.current_frame_index = 0
self.video_ended = False
def __str__(self) -> str:
"""Return a concise string representation of the Video object."""
return str(self.video_info)
def __repr__(self) -> str:
"""Return a detailed string representation of the Video object."""
return repr(self.video_info)
def import_video(self, video_path: str | None) -> None:
"""Read video from video_path.
Args:
video_path (str): Path to video file.
"""
logging.info(f"Video format: {self._read_format}")
if self._read_format == VideoFormat.MP4:
self._cap = cv2.VideoCapture(video_path)
ret, _ = self._cap.read()
if not ret:
logging.error("Video path is invalid.")
self.video_info = VideoInfo(
video_path=str(self._video_path),
format=self._read_format,
frame_width=int(self._cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
frame_height=int(self._cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
original_fps=self._cap.get(cv2.CAP_PROP_FPS),
original_frame_count=int(self._cap.get(cv2.CAP_PROP_FRAME_COUNT)),
)
elif self._read_format.LIST_OF_ARRAY:
self.video_info = VideoInfo(
format=self._read_format,
frame_width=int(self.all_frames[0].shape[0]),
frame_height=int(self.all_frames[0].shape[1]),
original_frame_count=len(self.all_frames),
)
def _resize_frame_by_scale(self, frame_img: np.ndarray, frame_scale: int) -> np.ndarray:
"""Resize frame image.
Args:
frame_img (np.ndarray): Frame image.
frame_scale (int): Scale of frame.
Returns:
np.ndarray: Resized frame image.
"""
return cv2.resize(
frame_img,
(
int(self.video_info.frame_width / frame_scale),
int(self.video_info.frame_height / frame_scale),
),
)
def get_all_frames_of_video(
self,
return_format: str = "ndarray",
frame_scale: int | None = None,
desired_fps: int | None = None,
desired_interval_in_sec: int | None = None,
) -> list:
"""Get video frames by frame_scale and second_per_frame.
Args:
return_format (str, optional): Return format. Defaults to "cv2".
Options: [cv2, ndarray]
frame_scale (int | None, optional): Frame scale. Defaults to None.
desired_fps (int | None, optional): Desired FPS. Defaults to None.
desired_interval_in_sec (int | None, optional): Interval between frames in seconds.
If provided, frames will be extracted at this interval. Defaults to None.
""" # noqa: E501
if self._read_format == VideoFormat.LIST_OF_ARRAY:
resize_func = lambda img: self.process_frame_image( # noqa: E731
frame_img=img,
frame_scale=frame_scale,
return_format=return_format,
)
all_frames = list(map(resize_func, self.all_frames))
self.processed_frame_count = len(all_frames)
return all_frames
all_frames = []
if self._read_format == VideoFormat.MP4 and desired_fps is None and desired_interval_in_sec is None:
msg = (
"Either desired_fps",
"or desired_interval_in_sec must be provided.",
)
raise ValueError(msg)
if self._read_format == VideoFormat.MP4:
frame_step = self.get_frame_step(
desired_fps=desired_fps,
desired_interval_in_sec=desired_interval_in_sec,
)
for real_frame_idx in range(0, int(self.video_info.original_frame_count), int(frame_step)):
self._cap.set(cv2.CAP_PROP_POS_FRAMES, real_frame_idx)
ret, frame_img = self._cap.read()
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
if not ret:
break
frame_img = self.process_frame_image(
frame_img=frame_img,
frame_scale=frame_scale,
return_format=return_format,
)
all_frames.append(frame_img)
self._cap.release()
# cv2.destroyAllWindows()
self.processed_frame_count = len(all_frames)
return all_frames
def get_next_frame(
self,
return_format: str = "ndarray",
frame_scale: int | None = None,
desired_fps: int | None = None,
desired_interval_in_sec: int | None = None,
) -> np.ndarray | None:
"""Get the next video frame based on frame step.
Args:
return_format (str, optional): Return format. Defaults to "ndarray".
- [cv2, ndarray, pil]
frame_scale (int | None, optional): Frame scale. Defaults to None.
desired_fps (int | None, optional): Desired FPS. Defaults to None.
desired_interval_in_sec (int | None, optional): Desired interval.
Defaults to None.
Returns:
np.ndarray | None: The next frame as an ndarray, or None if no more
frames are available or the video ended.
"""
if self._read_format == VideoFormat.MP4 and desired_fps is None and desired_interval_in_sec is None:
msg = (
"Either desired_fps or",
"desired_interval_in_sec must be provided.",
)
raise ValueError(msg)
if self.video_ended:
logging.info("No frame available.")
return None # No more frames to process
if self._read_format == VideoFormat.MP4:
frame_step = self.get_frame_step(
desired_fps=desired_fps,
desired_interval_in_sec=desired_interval_in_sec,
)
# Skip to the next frame based on frame_step
self._cap.set(cv2.CAP_PROP_POS_FRAMES, self.current_frame_index)
ret, frame_img = self._cap.read()
if not ret:
self.video_ended = True
return None # No more frames or error occurred
# Update the current frame index for the next call
self.current_frame_index += frame_step
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
if self._read_format == VideoFormat.LIST_OF_ARRAY:
if self.current_frame_index < len(self.all_frames):
frame_img = self.all_frames[self.current_frame_index]
self.current_frame_index += 1
else:
# No more frames available.
self.video_ended = True
return None
self.video_info.processed_frame_count += 1
return self.process_frame_image(
frame_img=frame_img,
frame_scale=frame_scale,
return_format=return_format,
)
def process_frame_image(
self,
frame_img: np.ndarray,
return_format: str = "ndarray",
frame_scale: int | None = None,
) -> np.ndarray:
"""Process a single frame image.
Args:
frame_img (np.ndarray): Input frame image.
return_format (str, optional): Desired return format.
Defaults to "ndarray".
frame_scale (int | None, optional): Scale factor for resizing.
Defaults to None.
Returns:
np.ndarray: Processed frame image.
"""
if frame_scale is not None:
frame_img = self._resize_frame_by_scale(frame_img, frame_scale)
if return_format == "pil":
frame_img = Image.fromarray(frame_img).convert("RGB")
return frame_img
def get_frame_step(
self,
desired_interval_in_sec: int | None = None,
desired_fps: int | None = None,
) -> int:
"""Calculate the frame step based on desired interval or FPS.
Args:
desired_interval_in_sec (int | None): Desired interval between frames in seconds.
desired_fps (int | None): Desired frames per second.
Returns:
int: Calculated frame step.
""" # noqa: E501
if desired_fps is not None:
frame_step = int(round(self.video_info.original_fps / desired_fps))
processed_fps = desired_fps
if desired_interval_in_sec is not None:
frame_step = int(round(self.video_info.original_fps * desired_interval_in_sec))
processed_fps = round(1 / desired_interval_in_sec, 2)
self.video_info.processed_fps = processed_fps
return frame_step
def insert_annotation_to_current_frame(self, annotations: list[str]) -> None:
"""Insert annotations to the current frame.
Args:
annotations (list[str]): List of annotations.
"""
def get_video_info(self) -> VideoInfo:
"""Return the VideoInfo object containing video information."""
return self.video_info
|