Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
import torch
|
4 |
import re
|
5 |
from tokenizers import normalizers
|
6 |
from tokenizers.normalizers import Sequence, Replace, Strip, NFKC
|
7 |
-
from tokenizers import Regex
|
8 |
|
9 |
-
|
10 |
|
|
|
|
|
|
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
-
tokenizer =
|
14 |
-
|
15 |
-
|
16 |
-
)
|
|
|
17 |
|
18 |
-
model_2 =
|
|
|
19 |
model_2.to(device).eval()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
label_mapping = {
|
23 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
@@ -38,14 +47,14 @@ def clean_text(text: str) -> str:
|
|
38 |
return text
|
39 |
|
40 |
|
41 |
-
newline_to_space = Replace(Regex(r
|
42 |
-
join_hyphen_break = Replace(Regex(r
|
43 |
|
44 |
tokenizer.backend_tokenizer.normalizer = Sequence([
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
])
|
50 |
|
51 |
def classify_text(text):
|
@@ -58,13 +67,16 @@ def classify_text(text):
|
|
58 |
|
59 |
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
logits_2 = model_2(**inputs).logits
|
|
|
64 |
|
|
|
65 |
softmax_2 = torch.softmax(logits_2, dim=1)
|
|
|
66 |
|
67 |
-
averaged_probabilities = softmax_2
|
68 |
probabilities = averaged_probabilities[0]
|
69 |
|
70 |
ai_probs = probabilities.clone()
|
@@ -96,8 +108,7 @@ title = "AI Text Detector"
|
|
96 |
description = """
|
97 |
|
98 |
|
99 |
-
This tool uses
|
100 |
-
<br>
|
101 |
|
102 |
<div style="line-height: 1.8;">
|
103 |
✅ <b>Human Verification:</b> Human-written content is clearly marked.<br>
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassificationimport torch
|
|
|
3 |
import re
|
4 |
from tokenizers import normalizers
|
5 |
from tokenizers.normalizers import Sequence, Replace, Strip, NFKC
|
6 |
+
from tokenizers import Regex
|
7 |
|
8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
|
10 |
+
model1_path = "modernbert.bin"
|
11 |
+
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
12 |
+
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
13 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
16 |
+
|
17 |
+
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
18 |
+
model_1.load_state_dict(torch.load(model1_path, map_location=device))
|
19 |
+
model_1.to(device).eval()
|
20 |
|
21 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
22 |
+
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device))
|
23 |
model_2.to(device).eval()
|
24 |
|
25 |
+
model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
26 |
+
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
|
27 |
+
model_3.to(device).eval()
|
28 |
+
|
29 |
+
|
30 |
|
31 |
label_mapping = {
|
32 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
|
|
47 |
return text
|
48 |
|
49 |
|
50 |
+
newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
|
51 |
+
join_hyphen_break = Replace(Regex(r'(\w+)[--]\s*\n\s*(\w+)'), r"\1\2")
|
52 |
|
53 |
tokenizer.backend_tokenizer.normalizer = Sequence([
|
54 |
+
tokenizer.backend_tokenizer.normalizer,
|
55 |
+
join_hyphen_break,
|
56 |
+
newline_to_space,
|
57 |
+
Strip()
|
58 |
])
|
59 |
|
60 |
def classify_text(text):
|
|
|
67 |
|
68 |
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device)
|
69 |
|
70 |
+
with torch.no_grad():
|
71 |
+
logits_1 = model_1(**inputs).logits
|
72 |
logits_2 = model_2(**inputs).logits
|
73 |
+
logits_3 = model_3(**inputs).logits
|
74 |
|
75 |
+
softmax_1 = torch.softmax(logits_1, dim=1)
|
76 |
softmax_2 = torch.softmax(logits_2, dim=1)
|
77 |
+
softmax_3 = torch.softmax(logits_3, dim=1)
|
78 |
|
79 |
+
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
|
80 |
probabilities = averaged_probabilities[0]
|
81 |
|
82 |
ai_probs = probabilities.clone()
|
|
|
108 |
description = """
|
109 |
|
110 |
|
111 |
+
This tool uses the <b>ModernBERT</b> model to identify whether a given text was written by a human or generated by artificial intelligence (AI). It works with a soft voting ensemble using <b>three</b> models, combining their outputs to improve the accuracy.<br>
|
|
|
112 |
|
113 |
<div style="line-height: 1.8;">
|
114 |
✅ <b>Human Verification:</b> Human-written content is clearly marked.<br>
|