Spaces:
Running
Running
File size: 9,612 Bytes
e718856 9b791ee e718856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import logging
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.functions import kernel_function
from azure.cosmos import CosmosClient
from semantic_kernel.connectors.ai.open_ai.prompt_execution_settings.azure_chat_prompt_execution_settings import (
AzureChatPromptExecutionSettings,
)
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from models.converterModels import PowerConverter
from plugins.converterPlugin import ConverterPlugin
import os
import gradio as gr
from dotenv import load_dotenv
load_dotenv()
logger = logging.getLogger("kernel")
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(
"[%(asctime)s - %(name)s:%(lineno)d - %(levelname)s] %(message)s"
))
logger.addHandler(handler)
# Initialize Semantic Kernel
kernel = Kernel()
# Add Azure OpenAI Chat Service
kernel.add_service(AzureChatCompletion(
service_id="chat",
deployment_name=os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME"),
endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_KEY")
))
# SQL Generation Plugin
class NL2SQLPlugin:
@kernel_function(name="generate_sql", description="Generate Cosmos DB SQL query")
async def generate_sql(self, question: str) -> str:
sql = await self._generate_sql_helper(question)
# if ["DELETE", "UPDATE", "INSERT"] in sql:
# return ""
if "FROM converters c" in sql:
sql = sql.replace("FROM converters c", "FROM c")
if "SELECT *" not in sql and "FROM c" in sql:
sql = sql.replace("SELECT c.*,", "SELECT *")
sql = sql.replace("SELECT c.*", "SELECT *")
sql = sql.replace("SELECT c", "SELECT *")
return sql
async def _generate_sql_helper(self, question: str) -> str:
from semantic_kernel.contents import ChatHistory
chat_service = kernel.get_service("chat")
chat_history = ChatHistory()
chat_history.add_user_message(f"""Convert to Cosmos DB SQL: {question}
Collection: converters (alias 'c')
Fields:
- type (e.g., '350mA')
- artnr (numeric (int) article number e.g., 930546)
- output_voltage_v: dictionary with min/max values for output voltage
- output_voltage_v.min (e.g., 15)
- output_voltage_v.max (e.g., 40)
- nom_input_voltage_v: dictionary with min/max values for input voltage
- nom_input_voltage_v.min (e.g., 198)
- nom_input_voltage_v.max (e.g., 264)
- lamps: dictionary with min/max values for lamp types for this converter
- lamps["lamp_name"].min (e.g., 1)
- lamps["lamp_name"].max (e.g., 10)
- class (safety class)
- dimmability (e.g. if not dimmable 'NOT DIMMABLE'. if supports dimming, 'DALI/TOUCHDIM','MAINS DIM LC' etc)
- listprice (e.g., 58)
- lifecycle (e.g., 'Active')
- size (e.g., '150x30x30')
- dimlist_type (e.g., 'DALI')
- pdf_link (link to product PDF)
- converter_description (e.g., 'POWERLED CONVERTER REMOTE 180mA 8W IP20 1-10V')
- ip (Ingress Protection, integer values e.g., 20,67)
- efficiency_full_load (e.g., 0.9)
- name (e.g., 'Power Converter 350mA')
- unit (e.g., 'PC')
- strain_relief (e.g., "NO", "YES")
Return ONLY SQL without explanations""")
response = await chat_service.get_chat_message_content(
chat_history=chat_history,
settings=AzureChatPromptExecutionSettings()
)
return str(response)
# Register plugins
kernel.add_plugin(ConverterPlugin(logger=logger), "CosmosDBPlugin")
kernel.add_plugin(NL2SQLPlugin(), "NL2SQLPlugin")
# Updated query handler using function calling
async def handle_query(user_input: str):
settings = AzureChatPromptExecutionSettings(
function_choice_behavior=FunctionChoiceBehavior.Auto(auto_invoke=True)
)
prompt = f"""
You are a converter database expert. Process this user query:
{user_input}
Available functions:
- generate_sql: Creates SQL queries (use only for complex queries or schema keywords)
- query_converters: Executes SQL queries
- get_compatible_lamps: Simple artnr-based lamp queries
- get_converters_by_lamp_type: Simple lamp type searches
- get_lamp_limits: Simple artnr+lamp combinations
Decision Flow:
1. Use simple functions if query matches these patterns:
- "lamps for [artnr]" β get_compatible_lamps
- "converters for [lamp type]" β get_converters_by_lamp_type
- "min/max [lamp] for [artnr]" β get_lamp_limits
2. Use SQL generation ONLY when:
- Query contains schema keywords: voltage, price, type, ip, efficiency, size, class, dimmability
- Combining multiple conditions (AND/OR/NOT)
- Needs complex filtering/sorting
- Requesting technical specifications
SQL Guidelines (if needed):
1. Always use SELECT * instead of field lists
2. For exact matches use: WHERE c.[field] = value
3. For range matches always use exact checks: WHERE c.[field].min = X AND c.[field].max = Y
4. Do not use AS and cast key names
Examples:
User: "Show IP67 converters under β¬100" β generate_sql
User: "What lamps are compatible with 930560?" β get_compatible_lamps
User: "What converters are compatible with haloled lamps?" β get_converters_by_lamp_type
User: "Voltage range for 930562" β generate_sql
"""
result = await kernel.invoke_prompt(
prompt=prompt,
settings=settings
)
return str(result)
# Example usage
async def main():
while True:
try:
query = input("User: ")
if query.lower() in ["exit", "quit"]:
break
response = await handle_query(query)
print(response)
except KeyboardInterrupt:
break
# --- Gradio UI ---
custom_css = """
#chatbot-toggle-btn {
position: fixed;
bottom: 30px;
right: 30px;
z-index: 10001;
background-color: #ED1C24;
color: white;
border: none;
border-radius: 50%;
width: 56px;
height: 56px;
font-size: 28px;
font-weight: bold;
cursor: pointer;
box-shadow: 0 4px 12px rgba(0,0,0,0.3);
display: flex;
align-items: center;
justify-content: center;
transition: all 0.3s ease;
}
#chatbot-panel {
position: fixed;
bottom: 100px;
right: 30px;
z-index: 10000;
width: 600px;
height: 700px;
background-color: #ffffff;
border-radius: 20px;
box-shadow: 0 4px 24px rgba(0,0,0,0.25);
overflow: hidden;
display: flex;
flex-direction: column;
justify-content: space-between; /* keep input box pinned at the bottom */
font-family: 'Arial', sans-serif;
}
#chatbot-panel.hide {
display: none !important;
}
#chat-header {
background-color: #ED1C24;
color: white;
padding: 16px;
font-weight: bold;
font-size: 16px;
display: flex;
align-items: center;
gap: 12px;
}
#chat-header img {
border-radius: 50%;
width: 32px;
height: 32px;
}
.gr-chatbot {
flex: 1;
overflow-y: auto;
padding: 12px;
background-color: #f8f8f8;
border: none;
}
.gr-textbox {
border-top: 1px solid #eee;
padding: 10px;
background-color: #fff;
display: flex;
align-items: center;
justify-content: space-between;
gap: 10px;
}
.gr-textbox textarea {
flex: 1;
resize: none;
padding: 10px;
background-color: white;
border: 1px solid #ccc;
border-radius: 8px;
font-family: inherit;
font-size: 14px;
}
footer {
display: none !important;
}
"""
panel_visible = False
def toggle_panel():
global panel_visible
panel_visible = not panel_visible
return gr.Column(visible=panel_visible)
with gr.Blocks(css=custom_css) as demo:
# Toggle button (floating action button)
toggle_btn = gr.Button("π¬", elem_id="chatbot-toggle-btn")
# Chat panel (initially hidden)
chat_panel = gr.Column(visible=panel_visible, elem_id="chatbot-panel")
with chat_panel:
# Chat header
with gr.Row(elem_id="chat-header"):
gr.HTML("""
<div id='chat-header'>
<img src="https://www.svgrepo.com/download/490283/pixar-lamp.svg" />
Lofty the TAL Bot
</div>
""")
# Chatbot and input
chatbot = gr.Chatbot(elem_id="gr-chatbot", type="messages")
msg = gr.Textbox(placeholder="Type your question here...", elem_id="gr-textbox")
clear = gr.ClearButton([msg, chatbot])
# Function to handle messages
async def respond(message, chat_history):
response = await handle_query(message)
# Convert existing history to OpenAI format if it's in tuples
# Add new messages
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
toggle_btn.click(toggle_panel, outputs=chat_panel)
demo.launch(share=True) |