File size: 8,045 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python3
# Copyright    2024-2025  Xiaomi Corp.        (authors: Wei Kang
#                                                       Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
      python3 -m zipvoice.bin.compute_fbank \
        --source-dir data/manifests \
        --dest-dir data/fbank \
        --dataset libritts \
        --subset dev-other \
        --sampling-rate 24000 \
        --num-jobs 20

The input would be data/manifests/libritts-cuts_dev-other.jsonl.gz or
    (libritts_supervisions_dev-other.jsonl.gz and librittsrecordings_dev-other.jsonl.gz)

The output would be data/fbank/libritts-cuts_dev-other.jsonl.gz
"""


import argparse
import logging
from concurrent.futures import ProcessPoolExecutor as Pool
from pathlib import Path

import lhotse
import torch
from lhotse import CutSet, LilcomChunkyWriter, load_manifest_lazy

from zipvoice.utils.feature import VocosFbank

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def str2bool(v):
    """Used in argparse.ArgumentParser.add_argument to indicate
    that a type is a bool type and user can enter

        - yes, true, t, y, 1, to represent True
        - no, false, f, n, 0, to represent False

    See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse  # noqa
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def get_args():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--sampling-rate",
        type=int,
        default=24000,
        help="The target sampling rate, the audio will be resampled to it.",
    )

    parser.add_argument(
        "--type",
        type=str,
        default="vocos",
        help="fbank type",
    )

    parser.add_argument(
        "--dataset",
        type=str,
        help="Dataset name.",
    )

    parser.add_argument(
        "--subset",
        type=str,
        help="The subset of the dataset.",
    )

    parser.add_argument(
        "--source-dir",
        type=str,
        default="data/manifests",
        help="The source directory of manifest files.",
    )

    parser.add_argument(
        "--dest-dir",
        type=str,
        default="data/fbank",
        help="The destination directory of manifest files.",
    )

    parser.add_argument(
        "--split-cuts",
        type=str2bool,
        default=False,
        help="Whether to use splited cuts.",
    )

    parser.add_argument(
        "--split-begin",
        type=int,
        help="Start idx of splited cuts.",
    )

    parser.add_argument(
        "--split-end",
        type=int,
        help="End idx of splited cuts.",
    )

    parser.add_argument(
        "--batch-duration",
        type=int,
        default=1000,
        help="The batch duration when computing the features.",
    )

    parser.add_argument(
        "--num-jobs",
        type=int,
        default=20,
        help="The number of extractor workers.",
    )

    return parser.parse_args()


def compute_fbank_split_single(params, idx):
    lhotse.set_audio_duration_mismatch_tolerance(0.1)  # for emilia
    src_dir = Path(params.source_dir)
    output_dir = Path(params.dest_dir)

    if not src_dir.exists():
        logging.error(f"{src_dir} not exists")
        return

    if not output_dir.exists():
        output_dir.mkdir(parents=True, exist_ok=True)

    num_digits = 8
    if params.type == "vocos":
        extractor = VocosFbank()
    else:
        raise NotImplementedError(f"{params.type} is not supported")

    prefix = params.dataset
    subset = params.subset
    suffix = "jsonl.gz"

    idx = f"{idx}".zfill(num_digits)
    cuts_filename = f"{prefix}_cuts_{subset}.{idx}.{suffix}"

    if (src_dir / cuts_filename).is_file():
        logging.info(f"Loading manifests {src_dir / cuts_filename}")
        cut_set = load_manifest_lazy(src_dir / cuts_filename)
    else:
        logging.warning(f"Raw {cuts_filename} not exists, skipping")
        return

    cut_set = cut_set.resample(params.sampling_rate)

    if (output_dir / cuts_filename).is_file():
        logging.info(f"{cuts_filename} already exists - skipping.")
        return

    logging.info(f"Processing {subset}.{idx} of {prefix}")

    cut_set = cut_set.compute_and_store_features_batch(
        extractor=extractor,
        storage_path=f"{output_dir}/{prefix}_feats_{subset}_{idx}",
        num_workers=4,
        batch_duration=params.batch_duration,
        storage_type=LilcomChunkyWriter,
        overwrite=True,
    )
    cut_set.to_file(output_dir / cuts_filename)


def compute_fbank_split(params):
    if params.split_end < params.split_begin:
        logging.warning(
            f"Split begin should be smaller than split end, given "
            f"{params.split_begin} -> {params.split_end}."
        )

    with Pool(max_workers=params.num_jobs) as pool:
        futures = [
            pool.submit(compute_fbank_split_single, params, i)
            for i in range(params.split_begin, params.split_end)
        ]
        for f in futures:
            f.result()
            f.done()


def compute_fbank(params):
    src_dir = Path(params.source_dir)
    output_dir = Path(params.dest_dir)
    num_jobs = params.num_jobs
    if not output_dir.exists():
        output_dir.mkdir(parents=True, exist_ok=True)

    prefix = params.dataset
    subset = params.subset
    suffix = "jsonl.gz"

    cut_set_name = f"{prefix}_cuts_{subset}.{suffix}"

    if (src_dir / cut_set_name).is_file():
        logging.info(f"Loading manifests {src_dir / cut_set_name}")
        cut_set = load_manifest_lazy(src_dir / cut_set_name)
    else:
        recordings = load_manifest_lazy(
            src_dir / f"{prefix}_recordings_{subset}.{suffix}"
        )
        supervisions = load_manifest_lazy(
            src_dir / f"{prefix}_supervisions_{subset}.{suffix}"
        )
        cut_set = CutSet.from_manifests(
            recordings=recordings,
            supervisions=supervisions,
        )

    cut_set = cut_set.resample(params.sampling_rate)
    if params.type == "vocos":
        extractor = VocosFbank()
    else:
        raise NotImplementedError(f"{params.type} is not supported")

    cuts_filename = f"{prefix}_cuts_{subset}.{suffix}"
    if (output_dir / cuts_filename).is_file():
        logging.info(f"{prefix} {subset} already exists - skipping.")
        return
    logging.info(f"Processing {subset} of {prefix}")

    cut_set = cut_set.compute_and_store_features(
        extractor=extractor,
        storage_path=f"{output_dir}/{prefix}_feats_{subset}",
        num_jobs=num_jobs,
        storage_type=LilcomChunkyWriter,
    )
    cut_set.to_file(output_dir / cuts_filename)


if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)
    args = get_args()
    logging.info(vars(args))
    if args.split_cuts:
        compute_fbank_split(params=args)
    else:
        compute_fbank(params=args)