File size: 7,401 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
This script loads checkpoints and averages them.
python3 -m zipvoice.bin.generate_averaged_model \
--epoch 11 \
--avg 4 \
--model_name zipvoice \
--model-config conf/zipvoice_base.json \
--token-file data/tokens_emilia.txt \
--exp-dir exp/zipvoice
It will generate a file `epoch-11-avg-14.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-11-avg-4.pt")`.
"""
import argparse
import json
from pathlib import Path
import torch
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_dialog import ZipVoiceDialog, ZipVoiceDialogStereo
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import SimpleTokenizer
from zipvoice.utils.checkpoint import (
average_checkpoints_with_averaged_model,
find_checkpoints,
)
from zipvoice.utils.common import AttributeDict
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=11,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=4,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' or --iter",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipvoice/exp_zipvoice",
help="The experiment dir",
)
parser.add_argument(
"--model_name",
type=str,
default="zipvoice",
choices=[
"zipvoice",
"zipvoice_distill",
"zipvoice_dialog",
"zipvoice_dialog_stereo",
],
help="The model type to be averaged. ",
)
parser.add_argument(
"--model-config",
type=str,
default="conf/zipvoice_base.json",
help="The model configuration file.",
)
parser.add_argument(
"--token-file",
type=str,
default="data/tokens_emilia.txt",
help="The file that contains information that maps tokens to ids,"
"which is a text file with '{token}\t{token_id}' per line if type is"
"char or phone, otherwise it is a bpe_model file.",
)
return parser
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = AttributeDict()
params.update(vars(args))
with open(params.model_config, "r") as f:
model_config = json.load(f)
tokenizer = SimpleTokenizer(token_file=params.token_file)
if params.model_name in ["zipvoice", "zipvoice_distill"]:
tokenizer_config = {
"vocab_size": tokenizer.vocab_size,
"pad_id": tokenizer.pad_id,
}
elif params.model_name in ["zipvoice_dialog", "zipvoice_dialog_stereo"]:
tokenizer_config = {
"vocab_size": tokenizer.vocab_size,
"pad_id": tokenizer.pad_id,
"spk_a_id": tokenizer.spk_a_id,
"spk_b_id": tokenizer.spk_a_id,
}
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
print("Script started")
params.device = torch.device("cpu")
print(f"Device: {params.device}")
print("About to create model")
if params.model_name == "zipvoice":
model = ZipVoice(
**model_config["model"],
**tokenizer_config,
)
elif params.model_name == "zipvoice_distill":
model = ZipVoiceDistill(
**model_config["model"],
**tokenizer_config,
)
elif params.model_name == "zipvoice_dialog":
model = ZipVoiceDialog(
**model_config["model"],
**tokenizer_config,
)
elif params.model_name == "zipvoice_dialog_stereo":
model = ZipVoiceDialogStereo(
**model_config["model"],
**tokenizer_config,
)
else:
raise ValueError(f"Unknown model name: {params.model_name}")
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
print(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(params.device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=params.device,
),
strict=True,
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
print(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(params.device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=params.device,
),
strict=True,
)
if params.iter > 0:
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
else:
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
print("Done!")
if __name__ == "__main__":
main()
|