File size: 7,401 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
This script loads checkpoints and averages them.

python3 -m zipvoice.bin.generate_averaged_model  \
    --epoch 11 \
    --avg 4 \
    --model_name zipvoice \
    --model-config conf/zipvoice_base.json \
    --token-file data/tokens_emilia.txt \
    --exp-dir exp/zipvoice

It will generate a file `epoch-11-avg-14.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-11-avg-4.pt")`.
"""

import argparse
import json
from pathlib import Path

import torch

from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_dialog import ZipVoiceDialog, ZipVoiceDialogStereo
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import SimpleTokenizer
from zipvoice.utils.checkpoint import (
    average_checkpoints_with_averaged_model,
    find_checkpoints,
)
from zipvoice.utils.common import AttributeDict


def get_parser():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--epoch",
        type=int,
        default=11,
        help="""It specifies the checkpoint to use for decoding.
        Note: Epoch counts from 1.
        You can specify --avg to use more checkpoints for model averaging.""",
    )

    parser.add_argument(
        "--iter",
        type=int,
        default=0,
        help="""If positive, --epoch is ignored and it
        will use the checkpoint exp_dir/checkpoint-iter.pt.
        You can specify --avg to use more checkpoints for model averaging.
        """,
    )

    parser.add_argument(
        "--avg",
        type=int,
        default=4,
        help="Number of checkpoints to average. Automatically select "
        "consecutive checkpoints before the checkpoint specified by "
        "'--epoch' or --iter",
    )

    parser.add_argument(
        "--exp-dir",
        type=str,
        default="zipvoice/exp_zipvoice",
        help="The experiment dir",
    )

    parser.add_argument(
        "--model_name",
        type=str,
        default="zipvoice",
        choices=[
            "zipvoice",
            "zipvoice_distill",
            "zipvoice_dialog",
            "zipvoice_dialog_stereo",
        ],
        help="The model type to be averaged. ",
    )

    parser.add_argument(
        "--model-config",
        type=str,
        default="conf/zipvoice_base.json",
        help="The model configuration file.",
    )

    parser.add_argument(
        "--token-file",
        type=str,
        default="data/tokens_emilia.txt",
        help="The file that contains information that maps tokens to ids,"
        "which is a text file with '{token}\t{token_id}' per line if type is"
        "char or phone, otherwise it is a bpe_model file.",
    )

    return parser


@torch.no_grad()
def main():
    parser = get_parser()
    args = parser.parse_args()
    args.exp_dir = Path(args.exp_dir)
    params = AttributeDict()
    params.update(vars(args))

    with open(params.model_config, "r") as f:
        model_config = json.load(f)

    tokenizer = SimpleTokenizer(token_file=params.token_file)
    if params.model_name in ["zipvoice", "zipvoice_distill"]:
        tokenizer_config = {
            "vocab_size": tokenizer.vocab_size,
            "pad_id": tokenizer.pad_id,
        }
    elif params.model_name in ["zipvoice_dialog", "zipvoice_dialog_stereo"]:
        tokenizer_config = {
            "vocab_size": tokenizer.vocab_size,
            "pad_id": tokenizer.pad_id,
            "spk_a_id": tokenizer.spk_a_id,
            "spk_b_id": tokenizer.spk_a_id,
        }

    params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"

    print("Script started")

    params.device = torch.device("cpu")
    print(f"Device: {params.device}")

    print("About to create model")
    if params.model_name == "zipvoice":
        model = ZipVoice(
            **model_config["model"],
            **tokenizer_config,
        )
    elif params.model_name == "zipvoice_distill":
        model = ZipVoiceDistill(
            **model_config["model"],
            **tokenizer_config,
        )
    elif params.model_name == "zipvoice_dialog":
        model = ZipVoiceDialog(
            **model_config["model"],
            **tokenizer_config,
        )
    elif params.model_name == "zipvoice_dialog_stereo":
        model = ZipVoiceDialogStereo(
            **model_config["model"],
            **tokenizer_config,
        )
    else:
        raise ValueError(f"Unknown model name: {params.model_name}")

    if params.iter > 0:
        filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
            : params.avg + 1
        ]
        if len(filenames) == 0:
            raise ValueError(
                f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}"
            )
        elif len(filenames) < params.avg + 1:
            raise ValueError(
                f"Not enough checkpoints ({len(filenames)}) found for"
                f" --iter {params.iter}, --avg {params.avg}"
            )
        filename_start = filenames[-1]
        filename_end = filenames[0]
        print(
            "Calculating the averaged model over iteration checkpoints"
            f" from {filename_start} (excluded) to {filename_end}"
        )
        model.to(params.device)
        model.load_state_dict(
            average_checkpoints_with_averaged_model(
                filename_start=filename_start,
                filename_end=filename_end,
                device=params.device,
            ),
            strict=True,
        )
    else:
        assert params.avg > 0, params.avg
        start = params.epoch - params.avg
        assert start >= 1, start
        filename_start = f"{params.exp_dir}/epoch-{start}.pt"
        filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
        print(
            f"Calculating the averaged model over epoch range from "
            f"{start} (excluded) to {params.epoch}"
        )
        model.to(params.device)
        model.load_state_dict(
            average_checkpoints_with_averaged_model(
                filename_start=filename_start,
                filename_end=filename_end,
                device=params.device,
            ),
            strict=True,
        )
    if params.iter > 0:
        filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
    else:
        filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
    torch.save({"model": model.state_dict()}, filename)

    num_param = sum([p.numel() for p in model.parameters()])
    print(f"Number of model parameters: {num_param}")

    print("Done!")


if __name__ == "__main__":
    main()