File size: 18,580 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script generates speech with our pre-trained ZipVoice or
ZipVoice-Distill models. If no local model is specified,
Required files will be automatically downloaded from HuggingFace.
Usage:
Note: If you having trouble connecting to HuggingFace,
try switching endpoint to mirror site:
export HF_ENDPOINT=https://hf-mirror.com
(1) Inference of a single sentence:
python3 -m zipvoice.bin.infer_zipvoice \
--model-name "zipvoice" \
--prompt-wav prompt.wav \
--prompt-text "I am a prompt." \
--text "I am a sentence." \
--res-wav-path result.wav
(2) Inference of a list of sentences:
python3 -m zipvoice.bin.infer_zipvoice \
--model-name "zipvoice" \
--test-list test.tsv \
--res-dir results
`--model-name` can be `zipvoice` or `zipvoice_distill`,
which are the models before and after distillation, respectively.
Each line of `test.tsv` is in the format of
`{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}`.
"""
import argparse
import datetime as dt
import json
import os
from typing import Optional
import numpy as np
import safetensors.torch
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from lhotse.utils import fix_random_seed
from vocos import Vocos
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import (
EmiliaTokenizer,
EspeakTokenizer,
LibriTTSTokenizer,
SimpleTokenizer,
)
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.common import AttributeDict
from zipvoice.utils.feature import VocosFbank
HUGGINGFACE_REPO = "k2-fsa/ZipVoice"
PRETRAINED_MODEL = {
"zipvoice": "zipvoice/model.pt",
"zipvoice_distill": "zipvoice_distill/model.pt",
}
TOKEN_FILE = {
"zipvoice": "zipvoice/tokens.txt",
"zipvoice_distill": "zipvoice_distill/tokens.txt",
}
MODEL_CONFIG = {
"zipvoice": "zipvoice/zipvoice_base.json",
"zipvoice_distill": "zipvoice_distill/zipvoice_base.json",
}
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--model-name",
type=str,
default="zipvoice",
choices=["zipvoice", "zipvoice_distill"],
help="The model used for inference",
)
parser.add_argument(
"--checkpoint",
type=str,
default=None,
help="The model checkpoint. "
"Will download pre-trained checkpoint from huggingface if not specified.",
)
parser.add_argument(
"--model-config",
type=str,
default=None,
help="The model configuration file. "
"Will download zipvoice_base.json from huggingface if not specified.",
)
parser.add_argument(
"--vocoder-path",
type=str,
default=None,
help="The vocoder checkpoint. "
"Will download pre-trained vocoder from huggingface if not specified.",
)
parser.add_argument(
"--token-file",
type=str,
default=None,
help="The file that contains information that maps tokens to ids,"
"which is a text file with '{token}\t{token_id}' per line. "
"Will download tokens_emilia.txt from huggingface if not specified.",
)
parser.add_argument(
"--tokenizer",
type=str,
default="emilia",
choices=["emilia", "libritts", "espeak", "simple"],
help="Tokenizer type.",
)
parser.add_argument(
"--lang",
type=str,
default="en-us",
help="Language identifier, used when tokenizer type is espeak. see"
"https://github.com/rhasspy/espeak-ng/blob/master/docs/languages.md",
)
parser.add_argument(
"--test-list",
type=str,
default=None,
help="The list of prompt speech, prompt_transcription, "
"and text to synthesizein the format of "
"'{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}'.",
)
parser.add_argument(
"--prompt-wav",
type=str,
default=None,
help="The prompt wav to mimic",
)
parser.add_argument(
"--prompt-text",
type=str,
default=None,
help="The transcription of the prompt wav",
)
parser.add_argument(
"--text",
type=str,
default=None,
help="The text to synthesize",
)
parser.add_argument(
"--res-dir",
type=str,
default="results",
help="""
Path name of the generated wavs dir,
used when test-list is not None
""",
)
parser.add_argument(
"--res-wav-path",
type=str,
default="result.wav",
help="""
Path name of the generated wav path,
used when test-list is None
""",
)
parser.add_argument(
"--guidance-scale",
type=float,
default=None,
help="The scale of classifier-free guidance during inference.",
)
parser.add_argument(
"--num-step",
type=int,
default=None,
help="The number of sampling steps.",
)
parser.add_argument(
"--feat-scale",
type=float,
default=0.1,
help="The scale factor of fbank feature",
)
parser.add_argument(
"--speed",
type=float,
default=1.0,
help="Control speech speed, 1.0 means normal, >1.0 means speed up",
)
parser.add_argument(
"--t-shift",
type=float,
default=0.5,
help="Shift t to smaller ones if t_shift < 1.0",
)
parser.add_argument(
"--target-rms",
type=float,
default=0.1,
help="Target speech normalization rms value, set to 0 to disable normalization",
)
parser.add_argument(
"--seed",
type=int,
default=666,
help="Random seed",
)
return parser
def get_vocoder(vocos_local_path: Optional[str] = None):
if vocos_local_path:
vocoder = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(
f"{vocos_local_path}/pytorch_model.bin",
weights_only=True,
map_location="cpu",
)
vocoder.load_state_dict(state_dict)
else:
vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz")
return vocoder
def generate_sentence(
save_path: str,
prompt_text: str,
prompt_wav: str,
text: str,
model: torch.nn.Module,
vocoder: torch.nn.Module,
tokenizer: EmiliaTokenizer,
feature_extractor: VocosFbank,
device: torch.device,
num_step: int = 16,
guidance_scale: float = 1.0,
speed: float = 1.0,
t_shift: float = 0.5,
target_rms: float = 0.1,
feat_scale: float = 0.1,
sampling_rate: int = 24000,
):
"""
Generate waveform of a text based on a given prompt
waveform and its transcription.
Args:
save_path (str): Path to save the generated wav.
prompt_text (str): Transcription of the prompt wav.
prompt_wav (str): Path to the prompt wav file.
text (str): Text to be synthesized into a waveform.
model (torch.nn.Module): The model used for generation.
vocoder (torch.nn.Module): The vocoder used to convert features to waveforms.
tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens.
feature_extractor (VocosFbank): The feature extractor used to
extract acoustic features.
device (torch.device): The device on which computations are performed.
num_step (int, optional): Number of steps for decoding. Defaults to 16.
guidance_scale (float, optional): Scale for classifier-free guidance.
Defaults to 1.0.
speed (float, optional): Speed control. Defaults to 1.0.
t_shift (float, optional): Time shift. Defaults to 0.5.
target_rms (float, optional): Target RMS for waveform normalization.
Defaults to 0.1.
feat_scale (float, optional): Scale for features.
Defaults to 0.1.
sampling_rate (int, optional): Sampling rate for the waveform.
Defaults to 24000.
Returns:
metrics (dict): Dictionary containing time and real-time
factor metrics for processing.
"""
# Convert text to tokens
tokens = tokenizer.texts_to_token_ids([text])
prompt_tokens = tokenizer.texts_to_token_ids([prompt_text])
# Load and preprocess prompt wav
prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav)
if prompt_sampling_rate != sampling_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=prompt_sampling_rate, new_freq=sampling_rate
)
prompt_wav = resampler(prompt_wav)
prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav)))
if prompt_rms < target_rms:
prompt_wav = prompt_wav * target_rms / prompt_rms
# Extract features from prompt wav
prompt_features = feature_extractor.extract(
prompt_wav, sampling_rate=sampling_rate
).to(device)
prompt_features = prompt_features.unsqueeze(0) * feat_scale
prompt_features_lens = torch.tensor([prompt_features.size(1)], device=device)
# Start timing
start_t = dt.datetime.now()
# Generate features
(
pred_features,
pred_features_lens,
pred_prompt_features,
pred_prompt_features_lens,
) = model.sample(
tokens=tokens,
prompt_tokens=prompt_tokens,
prompt_features=prompt_features,
prompt_features_lens=prompt_features_lens,
speed=speed,
t_shift=t_shift,
duration="predict",
num_step=num_step,
guidance_scale=guidance_scale,
)
# Postprocess predicted features
pred_features = pred_features.permute(0, 2, 1) / feat_scale # (B, C, T)
# Start vocoder processing
start_vocoder_t = dt.datetime.now()
wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1)
# Calculate processing times and real-time factors
t = (dt.datetime.now() - start_t).total_seconds()
t_no_vocoder = (start_vocoder_t - start_t).total_seconds()
t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds()
wav_seconds = wav.shape[-1] / sampling_rate
rtf = t / wav_seconds
rtf_no_vocoder = t_no_vocoder / wav_seconds
rtf_vocoder = t_vocoder / wav_seconds
metrics = {
"t": t,
"t_no_vocoder": t_no_vocoder,
"t_vocoder": t_vocoder,
"wav_seconds": wav_seconds,
"rtf": rtf,
"rtf_no_vocoder": rtf_no_vocoder,
"rtf_vocoder": rtf_vocoder,
}
# Adjust wav volume if necessary
if prompt_rms < target_rms:
wav = wav * prompt_rms / target_rms
torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate)
return metrics
def generate_list(
res_dir: str,
test_list: str,
model: torch.nn.Module,
vocoder: torch.nn.Module,
tokenizer: EmiliaTokenizer,
feature_extractor: VocosFbank,
device: torch.device,
num_step: int = 16,
guidance_scale: float = 1.0,
speed: float = 1.0,
t_shift: float = 0.5,
target_rms: float = 0.1,
feat_scale: float = 0.1,
sampling_rate: int = 24000,
):
total_t = []
total_t_no_vocoder = []
total_t_vocoder = []
total_wav_seconds = []
with open(test_list, "r") as fr:
lines = fr.readlines()
for i, line in enumerate(lines):
wav_name, prompt_text, prompt_wav, text = line.strip().split("\t")
save_path = f"{res_dir}/{wav_name}.wav"
metrics = generate_sentence(
save_path=save_path,
prompt_text=prompt_text,
prompt_wav=prompt_wav,
text=text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=device,
num_step=num_step,
guidance_scale=guidance_scale,
speed=speed,
t_shift=t_shift,
target_rms=target_rms,
feat_scale=feat_scale,
sampling_rate=sampling_rate,
)
print(f"[Sentence: {i}] RTF: {metrics['rtf']:.4f}")
total_t.append(metrics["t"])
total_t_no_vocoder.append(metrics["t_no_vocoder"])
total_t_vocoder.append(metrics["t_vocoder"])
total_wav_seconds.append(metrics["wav_seconds"])
print(f"Average RTF: {np.sum(total_t) / np.sum(total_wav_seconds):.4f}")
print(
f"Average RTF w/o vocoder: "
f"{np.sum(total_t_no_vocoder) / np.sum(total_wav_seconds):.4f}"
)
print(
f"Average RTF vocoder: "
f"{np.sum(total_t_vocoder) / np.sum(total_wav_seconds):.4f}"
)
@torch.inference_mode()
def main():
parser = get_parser()
args = parser.parse_args()
params = AttributeDict()
params.update(vars(args))
fix_random_seed(params.seed)
model_defaults = {
"zipvoice": {
"num_step": 16,
"guidance_scale": 1.0,
},
"zipvoice_distill": {
"num_step": 8,
"guidance_scale": 3.0,
},
}
model_specific_defaults = model_defaults.get(params.model_name, {})
for param, value in model_specific_defaults.items():
if getattr(params, param) is None:
setattr(params, param, value)
print(f"Setting {param} to default value: {value}")
assert (params.test_list is not None) ^ (
(params.prompt_wav and params.prompt_text and params.text) is not None
), (
"For inference, please provide prompts and text with either '--test-list'"
" or '--prompt-wav, --prompt-text and --text'."
)
if torch.cuda.is_available():
params.device = torch.device("cuda", 0)
elif torch.backends.mps.is_available():
params.device = torch.device("mps")
else:
params.device = torch.device("cpu")
print("Loading model...")
if params.model_config is None:
model_config = hf_hub_download(
HUGGINGFACE_REPO, filename=MODEL_CONFIG[params.model_name]
)
else:
model_config = params.model_config
with open(model_config, "r") as f:
model_config = json.load(f)
if params.token_file is None:
token_file = hf_hub_download(
HUGGINGFACE_REPO, filename=TOKEN_FILE[params.model_name]
)
else:
token_file = params.token_file
if params.tokenizer == "emilia":
tokenizer = EmiliaTokenizer(token_file=token_file)
elif params.tokenizer == "libritts":
tokenizer = LibriTTSTokenizer(token_file=token_file)
elif params.tokenizer == "espeak":
tokenizer = EspeakTokenizer(token_file=token_file, lang=params.lang)
else:
assert params.tokenizer == "simple"
tokenizer = SimpleTokenizer(token_file=token_file)
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
if params.checkpoint is None:
model_ckpt = hf_hub_download(
HUGGINGFACE_REPO,
filename=PRETRAINED_MODEL[params.model_name],
)
else:
model_ckpt = params.checkpoint
if params.model_name == "zipvoice":
model = ZipVoice(
**model_config["model"],
**tokenizer_config,
)
else:
assert params.model_name == "zipvoice_distill"
model = ZipVoiceDistill(
**model_config["model"],
**tokenizer_config,
)
if model_ckpt.endswith(".safetensors"):
safetensors.torch.load_model(model, model_ckpt)
elif model_ckpt.endswith(".pt"):
load_checkpoint(filename=model_ckpt, model=model, strict=True)
else:
raise NotImplementedError(f"Unsupported model checkpoint format: {model_ckpt}")
model = model.to(params.device)
model.eval()
vocoder = get_vocoder(params.vocoder_path)
vocoder = vocoder.to(params.device)
vocoder.eval()
if model_config["feature"]["type"] == "vocos":
feature_extractor = VocosFbank()
else:
raise NotImplementedError(
f"Unsupported feature type: {model_config['feature']['type']}"
)
params.sampling_rate = model_config["feature"]["sampling_rate"]
print("Start generating...")
if params.test_list:
os.makedirs(params.res_dir, exist_ok=True)
generate_list(
res_dir=params.res_dir,
test_list=params.test_list,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=params.device,
num_step=params.num_step,
guidance_scale=params.guidance_scale,
speed=params.speed,
t_shift=params.t_shift,
target_rms=params.target_rms,
feat_scale=params.feat_scale,
sampling_rate=params.sampling_rate,
)
else:
generate_sentence(
save_path=params.res_wav_path,
prompt_text=params.prompt_text,
prompt_wav=params.prompt_wav,
text=params.text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=params.device,
num_step=params.num_step,
guidance_scale=params.guidance_scale,
speed=params.speed,
t_shift=params.t_shift,
target_rms=params.target_rms,
feat_scale=params.feat_scale,
sampling_rate=params.sampling_rate,
)
print("Done")
if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
main()
|