File size: 12,201 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script exports a pre-trained ZipVoice or ZipVoice-Distill model from PyTorch to
ONNX.
Usage:
python3 -m zipvoice.bin.onnx_export \
--model-name zipvoice \
--token-file data/tokens_emilia.txt \
--checkpoint exp/zipvoice/epoch-11-avg-4.pt \
--model-config conf/zipvoice_base.json \
--onnx-model-dir exp/zipvoice_onnx
`--model-name` can be `zipvoice` or `zipvoice_distill`,
which are the models before and after distillation, respectively.
"""
import argparse
import json
import os
from typing import Dict
import onnx
import safetensors.torch
import torch
from onnxruntime.quantization import QuantType, quantize_dynamic
from torch import Tensor, nn
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import SimpleTokenizer
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.common import AttributeDict
from zipvoice.utils.scaling_converter import convert_scaled_to_non_scaled
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--onnx-model-dir",
type=str,
default="exp",
help="Dir to the exported models",
)
parser.add_argument(
"--model-name",
type=str,
default="zipvoice",
choices=["zipvoice", "zipvoice_distill"],
help="The model used for inference",
)
parser.add_argument(
"--token-file",
type=str,
default="data/tokens_emilia.txt",
help="The file that contains information that maps tokens to ids,"
"which is a text file with '{token}\t{token_id}' per line.",
)
parser.add_argument(
"--checkpoint",
type=str,
default="exp_zipvoice/epoch-11-avg-4.pt",
help="The model checkpoint.",
)
parser.add_argument(
"--model-config",
type=str,
default="conf/zipvoice_base.json",
help="The model configuration file.",
)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = value
onnx.save(model, filename)
class OnnxTextModel(nn.Module):
def __init__(self, model: nn.Module):
"""A wrapper for ZipVoice text encoder."""
super().__init__()
self.embed = model.embed
self.text_encoder = model.text_encoder
self.pad_id = model.pad_id
def forward(
self,
tokens: Tensor,
prompt_tokens: Tensor,
prompt_features_len: Tensor,
speed: Tensor,
) -> Tensor:
cat_tokens = torch.cat([prompt_tokens, tokens], dim=1)
cat_tokens = nn.functional.pad(cat_tokens, (0, 1), value=self.pad_id)
tokens_len = cat_tokens.shape[1] - 1
padding_mask = (torch.arange(tokens_len + 1) == tokens_len).unsqueeze(0)
embed = self.embed(cat_tokens)
embed = self.text_encoder(x=embed, t=None, padding_mask=padding_mask)
features_len = torch.ceil(
(prompt_features_len / prompt_tokens.shape[1] * tokens_len / speed)
).to(dtype=torch.int64)
token_dur = torch.div(features_len, tokens_len, rounding_mode="floor").to(
dtype=torch.int64
)
text_condition = embed[:, :-1, :].unsqueeze(2).expand(-1, -1, token_dur, -1)
text_condition = text_condition.reshape(embed.shape[0], -1, embed.shape[2])
text_condition = torch.cat(
[
text_condition,
embed[:, -1:, :].expand(-1, features_len - text_condition.shape[1], -1),
],
dim=1,
)
return text_condition
class OnnxFlowMatchingModel(nn.Module):
def __init__(self, model: nn.Module):
"""A wrapper for ZipVoice flow-matching decoder."""
super().__init__()
self.distill = model.distill
self.fm_decoder = model.fm_decoder
self.model_func = getattr(model, "forward_fm_decoder")
self.feat_dim = model.feat_dim
def forward(
self,
t: Tensor,
x: Tensor,
text_condition: Tensor,
speech_condition: torch.Tensor,
guidance_scale: Tensor,
) -> Tensor:
if self.distill:
return self.model_func(
t=t,
xt=x,
text_condition=text_condition,
speech_condition=speech_condition,
guidance_scale=guidance_scale,
)
else:
x = x.repeat(2, 1, 1)
text_condition = torch.cat(
[torch.zeros_like(text_condition), text_condition], dim=0
)
speech_condition = torch.cat(
[
torch.where(
t > 0.5, torch.zeros_like(speech_condition), speech_condition
),
speech_condition,
],
dim=0,
)
guidance_scale = torch.where(t > 0.5, guidance_scale, guidance_scale * 2.0)
data_uncond, data_cond = self.model_func(
t=t,
xt=x,
text_condition=text_condition,
speech_condition=speech_condition,
).chunk(2, dim=0)
v = (1 + guidance_scale) * data_cond - guidance_scale * data_uncond
return v
def export_text_encoder(
model: OnnxTextModel,
filename: str,
opset_version: int = 11,
) -> None:
"""Export the text encoder model to ONNX format.
Args:
model:
The input model
filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
tokens = torch.tensor([[2, 3, 4, 5]], dtype=torch.int64)
prompt_tokens = torch.tensor([[0, 1]], dtype=torch.int64)
prompt_features_len = torch.tensor(10, dtype=torch.int64)
speed = torch.tensor(1.0, dtype=torch.float32)
model = torch.jit.trace(model, (tokens, prompt_tokens, prompt_features_len, speed))
torch.onnx.export(
model,
(tokens, prompt_tokens, prompt_features_len, speed),
filename,
verbose=False,
opset_version=opset_version,
input_names=["tokens", "prompt_tokens", "prompt_features_len", "speed"],
output_names=["text_condition"],
dynamic_axes={
"tokens": {0: "N", 1: "T"},
"prompt_tokens": {0: "N", 1: "T"},
"text_condition": {0: "N", 1: "T"},
},
)
meta_data = {
"version": "1",
"model_author": "k2-fsa",
"comment": "ZipVoice text encoder",
}
print(f"meta_data: {meta_data}")
add_meta_data(filename=filename, meta_data=meta_data)
print(f"Exported to {filename}")
def export_fm_decoder(
model: OnnxFlowMatchingModel,
filename: str,
opset_version: int = 11,
) -> None:
"""Export the flow matching decoder model to ONNX format.
Args:
model:
The input model
filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
feat_dim = model.feat_dim
seq_len = 200
t = torch.tensor(0.5, dtype=torch.float32)
x = torch.randn(1, seq_len, feat_dim, dtype=torch.float32)
text_condition = torch.randn(1, seq_len, feat_dim, dtype=torch.float32)
speech_condition = torch.randn(1, seq_len, feat_dim, dtype=torch.float32)
guidance_scale = torch.tensor(1.0, dtype=torch.float32)
model = torch.jit.trace(
model, (t, x, text_condition, speech_condition, guidance_scale)
)
torch.onnx.export(
model,
(t, x, text_condition, speech_condition, guidance_scale),
filename,
verbose=False,
opset_version=opset_version,
input_names=["t", "x", "text_condition", "speech_condition", "guidance_scale"],
output_names=["v"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"text_condition": {0: "N", 1: "T"},
"speech_condition": {0: "N", 1: "T"},
"v": {0: "N", 1: "T"},
},
)
meta_data = {
"version": "1",
"model_author": "k2-fsa",
"comment": "ZipVoice flow-matching decoder",
"feat_dim": str(feat_dim),
}
print(f"meta_data: {meta_data}")
add_meta_data(filename=filename, meta_data=meta_data)
print(f"Exported to {filename}")
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = AttributeDict()
params.update(vars(args))
model_config = params.model_config
with open(model_config, "r") as f:
model_config = json.load(f)
for key, value in model_config["model"].items():
setattr(params, key, value)
for key, value in model_config["feature"].items():
setattr(params, key, value)
token_file = params.token_file
tokenizer = SimpleTokenizer(token_file)
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
if params.model_name == "zipvoice":
model = ZipVoice(
**model_config["model"],
**tokenizer_config,
)
else:
assert params.model_name == "zipvoice_distill"
model = ZipVoiceDistill(
**model_config["model"],
**tokenizer_config,
)
model_ckpt = params.checkpoint
if model_ckpt.endswith(".safetensors"):
safetensors.torch.load_model(model, model_ckpt)
elif model_ckpt.endswith(".pt"):
load_checkpoint(filename=model_ckpt, model=model, strict=True)
else:
raise NotImplementedError(f"Unsupported model checkpoint format: {model_ckpt}")
device = torch.device("cpu")
model = model.to(device)
model.eval()
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
print("Exporting model")
os.makedirs(params.onnx_model_dir, exist_ok=True)
opset_version = 11
text_encoder = OnnxTextModel(model=model)
text_encoder_file = f"{params.onnx_model_dir}/text_encoder.onnx"
export_text_encoder(
model=text_encoder,
filename=text_encoder_file,
opset_version=opset_version,
)
fm_decoder = OnnxFlowMatchingModel(model=model)
fm_decoder_file = f"{params.onnx_model_dir}/fm_decoder.onnx"
export_fm_decoder(
model=fm_decoder,
filename=fm_decoder_file,
opset_version=opset_version,
)
print("Generate int8 quantization models")
text_encoder_int8_file = f"{params.onnx_model_dir}/text_encoder_int8.onnx"
quantize_dynamic(
model_input=text_encoder_file,
model_output=text_encoder_int8_file,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
fm_decoder_int8_file = f"{params.onnx_model_dir}/fm_decoder_int8.onnx"
quantize_dynamic(
model_input=fm_decoder_file,
model_output=fm_decoder_int8_file,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
print("Done!")
if __name__ == "__main__":
main()
|