File size: 10,975 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Copyright      2021  Piotr Żelasko
# Copyright      2022-2024  Xiaomi Corporation     (Authors: Mingshuang Luo,
#                                                            Zengwei Yao,
#                                                            Zengrui Jin,
#                                                            Han Zhu,
#                                                            Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional

import torch
from lhotse import CutSet, load_manifest_lazy
from lhotse.dataset import DynamicBucketingSampler, SimpleCutSampler
from lhotse.dataset.input_strategies import OnTheFlyFeatures, PrecomputedFeatures
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader

from zipvoice.dataset.dataset import SpeechSynthesisDataset
from zipvoice.utils.common import str2bool
from zipvoice.utils.feature import VocosFbank


class _SeedWorkers:
    def __init__(self, seed: int):
        self.seed = seed

    def __call__(self, worker_id: int):
        fix_random_seed(self.seed + worker_id)


SAMPLING_RATE = 24000


class TtsDataModule:
    """
    DataModule for tts experiments.
    It assumes there is always one train and valid dataloader,
    but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
    and test-other).

    It contains all the common data pipeline modules used in ASR
    experiments, e.g.:
    - dynamic batch size,
    - bucketing samplers,
    - cut concatenation,
    - on-the-fly feature extraction

    This class should be derived for specific corpora used in ASR tasks.
    """

    def __init__(self, args: argparse.Namespace):
        self.args = args

    @classmethod
    def add_arguments(cls, parser: argparse.ArgumentParser):
        group = parser.add_argument_group(
            title="TTS data related options",
            description="These options are used for the preparation of "
            "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
            "effective batch sizes, sampling strategies, applied data "
            "augmentations, etc.",
        )
        group.add_argument(
            "--manifest-dir",
            type=Path,
            default=Path("data/fbank"),
            help="Path to directory with train/valid/test cuts.",
        )
        group.add_argument(
            "--max-duration",
            type=int,
            default=200.0,
            help="Maximum pooled recordings duration (seconds) in a "
            "single batch. You can reduce it if it causes CUDA OOM.",
        )
        group.add_argument(
            "--bucketing-sampler",
            type=str2bool,
            default=True,
            help="When enabled, the batches will come from buckets of "
            "similar duration (saves padding frames).",
        )
        group.add_argument(
            "--num-buckets",
            type=int,
            default=30,
            help="The number of buckets for the DynamicBucketingSampler"
            "(you might want to increase it for larger datasets).",
        )

        group.add_argument(
            "--on-the-fly-feats",
            type=str2bool,
            default=False,
            help="When enabled, use on-the-fly cut mixing and feature "
            "extraction. Will drop existing precomputed feature manifests "
            "if available.",
        )
        group.add_argument(
            "--shuffle",
            type=str2bool,
            default=True,
            help="When enabled (=default), the examples will be "
            "shuffled for each epoch.",
        )
        group.add_argument(
            "--drop-last",
            type=str2bool,
            default=True,
            help="Whether to drop last batch. Used by sampler.",
        )
        group.add_argument(
            "--return-cuts",
            type=str2bool,
            default=False,
            help="When enabled, each batch will have the "
            "field: batch['cut'] with the cuts that "
            "were used to construct it.",
        )
        group.add_argument(
            "--num-workers",
            type=int,
            default=8,
            help="The number of training dataloader workers that "
            "collect the batches.",
        )

        group.add_argument(
            "--input-strategy",
            type=str,
            default="PrecomputedFeatures",
            help="AudioSamples or PrecomputedFeatures",
        )

    def train_dataloaders(
        self,
        cuts_train: CutSet,
        sampler_state_dict: Optional[Dict[str, Any]] = None,
    ) -> DataLoader:
        """
        Args:
          cuts_train:
            CutSet for training.
          sampler_state_dict:
            The state dict for the training sampler.
        """
        logging.info("About to create train dataset")

        train = SpeechSynthesisDataset(
            return_text=True,
            return_tokens=True,
            return_spk_ids=True,
            feature_input_strategy=OnTheFlyFeatures(VocosFbank())
            if self.args.on_the_fly_feats
            else PrecomputedFeatures(),
            return_cuts=self.args.return_cuts,
        )

        if self.args.bucketing_sampler:
            logging.info("Using DynamicBucketingSampler.")
            train_sampler = DynamicBucketingSampler(
                cuts_train,
                max_duration=self.args.max_duration,
                shuffle=self.args.shuffle,
                num_buckets=self.args.num_buckets,
                buffer_size=self.args.num_buckets * 2000,
                shuffle_buffer_size=self.args.num_buckets * 5000,
                drop_last=self.args.drop_last,
            )
        else:
            logging.info("Using SimpleCutSampler.")
            train_sampler = SimpleCutSampler(
                cuts_train,
                max_duration=self.args.max_duration,
                shuffle=self.args.shuffle,
            )
        logging.info("About to create train dataloader")

        if sampler_state_dict is not None:
            logging.info("Loading sampler state dict")
            train_sampler.load_state_dict(sampler_state_dict)

        # 'seed' is derived from the current random state, which will have
        # previously been set in the main process.
        seed = torch.randint(0, 100000, ()).item()
        worker_init_fn = _SeedWorkers(seed)

        train_dl = DataLoader(
            train,
            sampler=train_sampler,
            batch_size=None,
            num_workers=self.args.num_workers,
            persistent_workers=False,
            worker_init_fn=worker_init_fn,
        )

        return train_dl

    def dev_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
        logging.info("About to create dev dataset")
        validate = SpeechSynthesisDataset(
            return_text=True,
            return_tokens=True,
            return_spk_ids=True,
            feature_input_strategy=OnTheFlyFeatures(VocosFbank())
            if self.args.on_the_fly_feats
            else PrecomputedFeatures(),
            return_cuts=self.args.return_cuts,
        )
        dev_sampler = DynamicBucketingSampler(
            cuts_valid,
            max_duration=self.args.max_duration,
            shuffle=False,
        )
        logging.info("About to create valid dataloader")
        dev_dl = DataLoader(
            validate,
            sampler=dev_sampler,
            batch_size=None,
            num_workers=2,
            persistent_workers=False,
        )

        return dev_dl

    def test_dataloaders(self, cuts: CutSet) -> DataLoader:
        logging.info("About to create test dataset")
        test = SpeechSynthesisDataset(
            return_text=True,
            return_tokens=True,
            return_spk_ids=True,
            feature_input_strategy=OnTheFlyFeatures(VocosFbank())
            if self.args.on_the_fly_feats
            else PrecomputedFeatures(),
            return_cuts=self.args.return_cuts,
            return_audio=True,
        )
        test_sampler = DynamicBucketingSampler(
            cuts,
            max_duration=self.args.max_duration,
            shuffle=False,
        )
        logging.info("About to create test dataloader")
        test_dl = DataLoader(
            test,
            batch_size=None,
            sampler=test_sampler,
            num_workers=self.args.num_workers,
        )
        return test_dl

    @lru_cache()
    def train_custom_cuts(self, manifest_file) -> CutSet:
        logging.info(f"About to get the custom training cuts {manifest_file}")
        return load_manifest_lazy(manifest_file)

    @lru_cache()
    def dev_custom_cuts(self, manifest_file) -> CutSet:
        logging.info(f"About to get the custom validation cuts {manifest_file}")
        return load_manifest_lazy(manifest_file)

    @lru_cache()
    def train_emilia_EN_cuts(self) -> CutSet:
        logging.info("About to get train the EN subset")
        return load_manifest_lazy(self.args.manifest_dir / "emilia_cuts_EN.jsonl.gz")

    @lru_cache()
    def train_emilia_ZH_cuts(self) -> CutSet:
        logging.info("About to get train the ZH subset")
        return load_manifest_lazy(self.args.manifest_dir / "emilia_cuts_ZH.jsonl.gz")

    @lru_cache()
    def dev_emilia_EN_cuts(self) -> CutSet:
        logging.info("About to get dev the EN subset")
        return load_manifest_lazy(
            self.args.manifest_dir / "emilia_cuts_EN-dev.jsonl.gz"
        )

    @lru_cache()
    def dev_emilia_ZH_cuts(self) -> CutSet:
        logging.info("About to get dev the ZH subset")
        return load_manifest_lazy(
            self.args.manifest_dir / "emilia_cuts_ZH-dev.jsonl.gz"
        )

    @lru_cache()
    def train_libritts_cuts(self) -> CutSet:
        logging.info(
            "About to get the shuffled train-clean-100, \
            train-clean-360 and train-other-500 cuts"
        )
        return load_manifest_lazy(
            self.args.manifest_dir / "libritts_cuts_train-all-shuf.jsonl.gz"
        )

    @lru_cache()
    def dev_libritts_cuts(self) -> CutSet:
        logging.info("About to get dev-clean cuts")
        return load_manifest_lazy(
            self.args.manifest_dir / "libritts_cuts_dev-clean.jsonl.gz"
        )