File size: 5,684 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python3
# Copyright    2025  Xiaomi Corp.        (authors:  Han Zhu,
#                                                   Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
Calculate WER with Hubert models.
"""
import argparse
import os
import re
from pathlib import Path

import librosa
import numpy as np
import soundfile as sf
import torch
from jiwer import compute_measures
from tqdm import tqdm
from transformers import pipeline


def get_parser():
    parser = argparse.ArgumentParser()

    parser.add_argument("--wav-path", type=str, help="path of the speech directory")
    parser.add_argument(
        "--decode-path",
        type=str,
        default=None,
        help="path of the output file of WER information",
    )
    parser.add_argument(
        "--model-path",
        type=str,
        default=None,
        help="path of the local hubert model, e.g., "
        "model/huggingface/hubert-large-ls960-ft",
    )
    parser.add_argument(
        "--test-list",
        type=str,
        default="test.tsv",
        help="path of the transcript tsv file, where the first column "
        "is the wav name and the last column is the transcript",
    )
    parser.add_argument(
        "--batch-size", type=int, default=16, help="decoding batch size"
    )
    return parser


def post_process(text: str):
    text = text.replace("‘", "'")
    text = text.replace("’", "'")
    text = re.sub(r"[^a-zA-Z0-9']", " ", text.lower())
    text = re.sub(r"\s+", " ", text)
    text = text.strip()
    return text


def process_one(hypo, truth):
    truth = post_process(truth)
    hypo = post_process(hypo)

    measures = compute_measures(truth, hypo)
    word_num = len(truth.split(" "))
    wer = measures["wer"]
    subs = measures["substitutions"]
    dele = measures["deletions"]
    inse = measures["insertions"]
    return (truth, hypo, wer, subs, dele, inse, word_num)


class SpeechEvalDataset(torch.utils.data.Dataset):
    def __init__(self, wav_path: str, test_list: str):
        super().__init__()
        self.wav_name = []
        self.wav_paths = []
        self.transcripts = []
        with Path(test_list).open("r", encoding="utf8") as f:
            meta = [item.split("\t") for item in f.read().rstrip().split("\n")]
        for item in meta:
            self.wav_name.append(item[0])
            self.wav_paths.append(Path(wav_path, item[0] + ".wav"))
            self.transcripts.append(item[-1])

    def __len__(self):
        return len(self.wav_paths)

    def __getitem__(self, index: int):
        wav, sampling_rate = sf.read(self.wav_paths[index])
        item = {
            "array": librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000),
            "sampling_rate": 16000,
            "reference": self.transcripts[index],
            "wav_name": self.wav_name[index],
        }
        return item


def main(test_list, wav_path, model_path, decode_path, batch_size, device):

    if model_path is not None:
        pipe = pipeline(
            "automatic-speech-recognition",
            model=model_path,
            device=device,
            tokenizer=model_path,
        )
    else:
        pipe = pipeline(
            "automatic-speech-recognition",
            model="facebook/hubert-large-ls960-ft",
            device=device,
        )

    dataset = SpeechEvalDataset(wav_path, test_list)

    bar = tqdm(
        pipe(
            dataset,
            generate_kwargs={"language": "english", "task": "transcribe"},
            batch_size=batch_size,
        ),
        total=len(dataset),
    )

    wers = []
    inses = []
    deles = []
    subses = []
    word_nums = 0
    if decode_path:
        decode_dir = os.path.dirname(decode_path)
        if not os.path.exists(decode_dir):
            os.makedirs(decode_dir)
        fout = open(decode_path, "w")
    for out in bar:
        wav_name = out["wav_name"][0]
        transcription = post_process(out["text"].strip())
        text_ref = post_process(out["reference"][0].strip())
        truth, hypo, wer, subs, dele, inse, word_num = process_one(
            transcription, text_ref
        )
        if decode_path:
            fout.write(f"{wav_name}\t{wer}\t{truth}\t{hypo}\t{inse}\t{dele}\t{subs}\n")
        wers.append(float(wer))
        inses.append(float(inse))
        deles.append(float(dele))
        subses.append(float(subs))
        word_nums += word_num

    wer = round((np.sum(subses) + np.sum(deles) + np.sum(inses)) / word_nums * 100, 3)
    subs = round(np.mean(subses) * 100, 3)
    dele = round(np.mean(deles) * 100, 3)
    inse = round(np.mean(inses) * 100, 3)
    print(f"WER: {wer}%\n")
    if decode_path:
        fout.write(f"WER: {wer}%\n")
        fout.flush()


if __name__ == "__main__":
    parser = get_parser()
    args = parser.parse_args()
    if torch.cuda.is_available():
        device = torch.device("cuda", 0)
    else:
        device = torch.device("cpu")
    main(
        args.test_list,
        args.wav_path,
        args.model_path,
        args.decode_path,
        args.batch_size,
        device,
    )