File size: 57,342 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 |
# Copyright 2022-2025 Xiaomi Corp. (authors: Daniel Povey
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import random
import sys
from typing import Optional, Tuple, Union
try:
import k2
except Exception as e:
logging.warning(
f"Failed import k2 with error {e}. Swoosh functions will fallback to PyTorch"
f" implementation, leading to slower speed and higher memory consumption."
)
import torch
import torch.nn as nn
from torch import Tensor
custom_bwd = lambda func: torch.amp.custom_bwd(func, device_type="cuda")
custom_fwd = lambda func: torch.amp.custom_fwd(func, device_type="cuda")
def logaddexp_onnx(x: Tensor, y: Tensor) -> Tensor:
max_value = torch.max(x, y)
diff = torch.abs(x - y)
return max_value + torch.log1p(torch.exp(-diff))
# RuntimeError: Exporting the operator logaddexp to ONNX opset version
# 14 is not supported. Please feel free to request support or submit
# a pull request on PyTorch GitHub.
#
# The following function is to solve the above error when exporting
# models to ONNX via torch.jit.trace()
def logaddexp(x: Tensor, y: Tensor) -> Tensor:
# Caution(fangjun): Put torch.jit.is_scripting() before
# torch.onnx.is_in_onnx_export();
# otherwise, it will cause errors for torch.jit.script().
#
# torch.logaddexp() works for both torch.jit.script() and
# torch.jit.trace() but it causes errors for ONNX export.
#
if torch.jit.is_scripting():
# Note: We cannot use torch.jit.is_tracing() here as it also
# matches torch.onnx.export().
return torch.logaddexp(x, y)
elif torch.onnx.is_in_onnx_export():
return logaddexp_onnx(x, y)
else:
# for torch.jit.trace()
return torch.logaddexp(x, y)
class PiecewiseLinear(object):
"""
Piecewise linear function, from float to float, specified as nonempty list of (x,y)
pairs with the x values in order. x values <[initial x] or >[final x] are map to
[initial y], [final y] respectively.
"""
def __init__(self, *args):
assert len(args) >= 1, len(args)
if len(args) == 1 and isinstance(args[0], PiecewiseLinear):
self.pairs = list(args[0].pairs)
else:
self.pairs = [(float(x), float(y)) for x, y in args]
for x, y in self.pairs:
assert isinstance(x, (float, int)), type(x)
assert isinstance(y, (float, int)), type(y)
for i in range(len(self.pairs) - 1):
assert self.pairs[i + 1][0] > self.pairs[i][0], (
i,
self.pairs[i],
self.pairs[i + 1],
)
def __str__(self):
# e.g. 'PiecewiseLinear((0., 10.), (100., 0.))'
return f"PiecewiseLinear({str(self.pairs)[1:-1]})"
def __call__(self, x):
if x <= self.pairs[0][0]:
return self.pairs[0][1]
elif x >= self.pairs[-1][0]:
return self.pairs[-1][1]
else:
cur_x, cur_y = self.pairs[0]
for i in range(1, len(self.pairs)):
next_x, next_y = self.pairs[i]
if x >= cur_x and x <= next_x:
return cur_y + (next_y - cur_y) * (x - cur_x) / (next_x - cur_x)
cur_x, cur_y = next_x, next_y
assert False
def __mul__(self, alpha):
return PiecewiseLinear(*[(x, y * alpha) for x, y in self.pairs])
def __add__(self, x):
if isinstance(x, (float, int)):
return PiecewiseLinear(*[(p[0], p[1] + x) for p in self.pairs])
s, x = self.get_common_basis(x)
return PiecewiseLinear(
*[(sp[0], sp[1] + xp[1]) for sp, xp in zip(s.pairs, x.pairs)]
)
def max(self, x):
if isinstance(x, (float, int)):
x = PiecewiseLinear((0, x))
s, x = self.get_common_basis(x, include_crossings=True)
return PiecewiseLinear(
*[(sp[0], max(sp[1], xp[1])) for sp, xp in zip(s.pairs, x.pairs)]
)
def min(self, x):
if isinstance(x, float) or isinstance(x, int):
x = PiecewiseLinear((0, x))
s, x = self.get_common_basis(x, include_crossings=True)
return PiecewiseLinear(
*[(sp[0], min(sp[1], xp[1])) for sp, xp in zip(s.pairs, x.pairs)]
)
def __eq__(self, other):
return self.pairs == other.pairs
def get_common_basis(self, p: "PiecewiseLinear", include_crossings: bool = False):
"""
Returns (self_mod, p_mod) which are equivalent piecewise linear
functions to self and p, but with the same x values.
p: the other piecewise linear function
include_crossings: if true, include in the x values positions
where the functions indicate by this and p crosss.
"""
assert isinstance(p, PiecewiseLinear), type(p)
# get sorted x-values without repetition.
x_vals = sorted(set([x for x, _ in self.pairs] + [x for x, _ in p.pairs]))
y_vals1 = [self(x) for x in x_vals]
y_vals2 = [p(x) for x in x_vals]
if include_crossings:
extra_x_vals = []
for i in range(len(x_vals) - 1):
if (y_vals1[i] > y_vals2[i]) != (y_vals1[i + 1] > y_vals2[i + 1]):
# if the two lines in this subsegment potentially cross each other..
diff_cur = abs(y_vals1[i] - y_vals2[i])
diff_next = abs(y_vals1[i + 1] - y_vals2[i + 1])
# `pos`, between 0 and 1, gives the relative x position,
# with 0 being x_vals[i] and 1 being x_vals[i+1].
pos = diff_cur / (diff_cur + diff_next)
extra_x_val = x_vals[i] + pos * (x_vals[i + 1] - x_vals[i])
extra_x_vals.append(extra_x_val)
if len(extra_x_vals) > 0:
x_vals = sorted(set(x_vals + extra_x_vals))
y_vals1 = [self(x) for x in x_vals]
y_vals2 = [p(x) for x in x_vals]
return (
PiecewiseLinear(*zip(x_vals, y_vals1)),
PiecewiseLinear(*zip(x_vals, y_vals2)),
)
class ScheduledFloat(torch.nn.Module):
"""
This object is a torch.nn.Module only because we want it to show up in
[top_level module].modules(); it does not have a working forward() function.
You are supposed to cast it to float, as in, float(parent_module.whatever), and use
it as something like a dropout prob.
It is a floating point value whose value changes depending on the batch count of the
training loop. It is a piecewise linear function where you specify the (x,y) pairs
in sorted order on x; x corresponds to the batch index. For batch-index values
before the first x or after the last x, we just use the first or last y value.
Example:
self.dropout = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0.0)
`default` is used when self.batch_count is not set or not in training mode or in
torch.jit scripting mode.
"""
def __init__(self, *args, default: float = 0.0):
super().__init__()
# self.batch_count and self.name will be written to in the training loop.
self.batch_count = None
self.name = None
self.default = default
self.schedule = PiecewiseLinear(*args)
def extra_repr(self) -> str:
return (
f"batch_count={self.batch_count}, schedule={str(self.schedule.pairs[1:-1])}"
)
def __float__(self):
batch_count = self.batch_count
if (
batch_count is None
or not self.training
or torch.jit.is_scripting()
or torch.jit.is_tracing()
):
return float(self.default)
else:
ans = self.schedule(self.batch_count)
if random.random() < 0.0002:
logging.debug(
f"ScheduledFloat: name={self.name}, "
f"batch_count={self.batch_count}, ans={ans}"
)
return ans
def __add__(self, x):
if isinstance(x, float) or isinstance(x, int):
return ScheduledFloat(self.schedule + x, default=self.default)
else:
return ScheduledFloat(
self.schedule + x.schedule, default=self.default + x.default
)
def max(self, x):
if isinstance(x, float) or isinstance(x, int):
return ScheduledFloat(self.schedule.max(x), default=self.default)
else:
return ScheduledFloat(
self.schedule.max(x.schedule),
default=max(self.default, x.default),
)
FloatLike = Union[float, ScheduledFloat]
class CutoffEstimator:
"""
Estimates cutoffs of an arbitrary numerical quantity such that a specified
proportion of items will be above the cutoff on average.
p is the proportion of items that should be above the cutoff.
"""
def __init__(self, p: float):
self.p = p
# total count of items
self.count = 0
# total count of items that were above the cutoff
self.count_above = 0
# initial cutoff value
self.cutoff = 0
def __call__(self, x: float) -> bool:
"""
Returns true if x is above the cutoff.
"""
ans = x > self.cutoff
self.count += 1
if ans:
self.count_above += 1
cur_p = self.count_above / self.count
delta_p = cur_p - self.p
if (delta_p > 0) == ans:
q = abs(delta_p)
self.cutoff = x * q + self.cutoff * (1 - q)
return ans
class SoftmaxFunction(torch.autograd.Function):
"""
Tries to handle half-precision derivatives in a randomized way that should
be more accurate for training than the default behavior.
"""
@staticmethod
def forward(ctx, x: Tensor, dim: int):
ans = x.softmax(dim=dim)
# if x dtype is float16, x.softmax() returns a float32 because
# (presumably) that op does not support float16, and autocast
# is enabled.
if torch.is_autocast_enabled():
ans = ans.to(torch.float16)
ctx.save_for_backward(ans)
ctx.x_dtype = x.dtype
ctx.dim = dim
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor):
(ans,) = ctx.saved_tensors
with torch.amp.autocast("cuda", enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
return x_grad, None
def softmax(x: Tensor, dim: int):
if not x.requires_grad or torch.jit.is_scripting() or torch.jit.is_tracing():
return x.softmax(dim=dim)
return SoftmaxFunction.apply(x, dim)
class BiasNormFunction(torch.autograd.Function):
# This computes:
# scales = (torch.mean((x - bias) ** 2, keepdim=True)) ** -0.5 * log_scale.exp()
# return x * scales
# (after unsqueezing the bias), but it does it in a memory-efficient way so that
# it can just store the returned value (chances are, this will also be needed for
# some other reason, related to the next operation, so we can save memory).
@staticmethod
def forward(
ctx,
x: Tensor,
bias: Tensor,
log_scale: Tensor,
channel_dim: int,
store_output_for_backprop: bool,
) -> Tensor:
assert bias.ndim == 1
if channel_dim < 0:
channel_dim = channel_dim + x.ndim
ctx.store_output_for_backprop = store_output_for_backprop
ctx.channel_dim = channel_dim
for _ in range(channel_dim + 1, x.ndim):
bias = bias.unsqueeze(-1)
scales = (
torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5
) * log_scale.exp()
ans = x * scales
ctx.save_for_backward(
ans.detach() if store_output_for_backprop else x,
scales.detach(),
bias.detach(),
log_scale.detach(),
)
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor) -> Tensor:
ans_or_x, scales, bias, log_scale = ctx.saved_tensors
if ctx.store_output_for_backprop:
x = ans_or_x / scales
else:
x = ans_or_x
x = x.detach()
x.requires_grad = True
bias.requires_grad = True
log_scale.requires_grad = True
with torch.enable_grad():
# recompute scales from x, bias and log_scale.
scales = (
torch.mean((x - bias) ** 2, dim=ctx.channel_dim, keepdim=True) ** -0.5
) * log_scale.exp()
ans = x * scales
ans.backward(gradient=ans_grad)
return x.grad, bias.grad.flatten(), log_scale.grad, None, None
class BiasNorm(torch.nn.Module):
"""
This is intended to be a simpler, and hopefully cheaper, replacement for
LayerNorm. The observation this is based on, is that Transformer-type
networks, especially with pre-norm, sometimes seem to set one of the
feature dimensions to a large constant value (e.g. 50), which "defeats"
the LayerNorm because the output magnitude is then not strongly dependent
on the other (useful) features. Presumably the weight and bias of the
LayerNorm are required to allow it to do this.
Instead, we give the BiasNorm a trainable bias that it can use when
computing the scale for normalization. We also give it a (scalar)
trainable scale on the output.
Args:
num_channels: the number of channels, e.g. 512.
channel_dim: the axis/dimension corresponding to the channel,
interpreted as an offset from the input's ndim if negative.
This is NOT the num_channels; it should typically be one of
{-2, -1, 0, 1, 2, 3}.
log_scale: the initial log-scale that we multiply the output by; this
is learnable.
log_scale_min: FloatLike, minimum allowed value of log_scale
log_scale_max: FloatLike, maximum allowed value of log_scale
store_output_for_backprop: only possibly affects memory use; recommend
to set to True if you think the output of this module is more likely
than the input of this module to be required to be stored for the
backprop.
"""
def __init__(
self,
num_channels: int,
channel_dim: int = -1, # CAUTION: see documentation.
log_scale: float = 1.0,
log_scale_min: float = -1.5,
log_scale_max: float = 1.5,
store_output_for_backprop: bool = False,
) -> None:
super(BiasNorm, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.log_scale = nn.Parameter(torch.tensor(log_scale))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.log_scale_min = log_scale_min
self.log_scale_max = log_scale_max
self.store_output_for_backprop = store_output_for_backprop
def forward(self, x: Tensor) -> Tensor:
assert x.shape[self.channel_dim] == self.num_channels
if torch.jit.is_scripting() or torch.jit.is_tracing():
channel_dim = self.channel_dim
if channel_dim < 0:
channel_dim += x.ndim
bias = self.bias
for _ in range(channel_dim + 1, x.ndim):
bias = bias.unsqueeze(-1)
scales = (
torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5
) * self.log_scale.exp()
return x * scales
log_scale = limit_param_value(
self.log_scale,
min=float(self.log_scale_min),
max=float(self.log_scale_max),
training=self.training,
)
return BiasNormFunction.apply(
x,
self.bias,
log_scale,
self.channel_dim,
self.store_output_for_backprop,
)
def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear:
"""
Behaves like a constructor of a modified version of nn.Linear
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Linear(*args, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale)
return ans
class BalancerFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
min_mean: float,
max_mean: float,
min_rms: float,
max_rms: float,
grad_scale: float,
channel_dim: int,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
ctx.channel_dim = channel_dim
ctx.save_for_backward(x)
ctx.config = (
min_mean,
max_mean,
min_rms,
max_rms,
grad_scale,
channel_dim,
)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None, None, None]:
(x,) = ctx.saved_tensors
(
min_mean,
max_mean,
min_rms,
max_rms,
grad_scale,
channel_dim,
) = ctx.config
try:
with torch.enable_grad():
with torch.amp.autocast("cuda", enabled=False):
x = x.to(torch.float32)
x = x.detach()
x.requires_grad = True
mean_dims = [i for i in range(x.ndim) if i != channel_dim]
uncentered_var = (x**2).mean(dim=mean_dims, keepdim=True)
mean = x.mean(dim=mean_dims, keepdim=True)
stddev = (uncentered_var - (mean * mean)).clamp(min=1.0e-20).sqrt()
rms = uncentered_var.clamp(min=1.0e-20).sqrt()
m = mean / stddev
# part of loss that relates to mean / stddev
m_loss = (m - m.clamp(min=min_mean, max=max_mean)).abs()
# put a much larger scale on the RMS-max-limit loss, so that if both
# it and the m_loss are violated we fix the RMS loss first.
rms_clamped = rms.clamp(min=min_rms, max=max_rms)
r_loss = (rms_clamped / rms).log().abs()
loss = m_loss + r_loss
loss.backward(gradient=torch.ones_like(loss))
loss_grad = x.grad
loss_grad_rms = (
(loss_grad**2)
.mean(dim=mean_dims, keepdim=True)
.sqrt()
.clamp(min=1.0e-20)
)
loss_grad = loss_grad * (grad_scale / loss_grad_rms)
x_grad_float = x_grad.to(torch.float32)
# scale each element of loss_grad by the absolute value of the
# corresponding element of x_grad, which we view as a noisy estimate
# of its magnitude for that (frame and dimension). later we can
# consider factored versions.
x_grad_mod = x_grad_float + (x_grad_float.abs() * loss_grad)
x_grad = x_grad_mod.to(x_grad.dtype)
except Exception as e:
logging.info(
f"Caught exception in Balancer backward: {e}, "
f"size={list(x_grad.shape)}, will continue."
)
return x_grad, None, None, None, None, None, None
class Balancer(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to encourage, for
each channel, that it is positive at least a proportion `threshold` of the
time. It does this by multiplying negative derivative values by up to
(1+max_factor), and positive derivative values by up to (1-max_factor),
interpolated from 1 at the threshold to those extremal values when none
of the inputs are positive.
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
min_positive: the minimum, per channel, of the proportion of the time
that (x > 0), below which we start to modify the derivatives.
max_positive: the maximum, per channel, of the proportion of the time
that (x > 0), above which we start to modify the derivatives.
scale_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_abs and max_abs
are violated.
min_abs: the minimum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
max_abs: the maximum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
prob: determines the minimum probability with which we modify the
gradients for the {min,max}_positive and {min,max}_abs constraints,
on each forward(). This is done randomly to prevent all layers
from doing it at the same time.
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
min_positive: FloatLike = 0.05,
max_positive: FloatLike = 0.95,
min_abs: FloatLike = 0.2,
max_abs: FloatLike = 100.0,
grad_scale: FloatLike = 0.04,
prob: Optional[FloatLike] = None,
):
super().__init__()
if prob is None:
prob = ScheduledFloat((0.0, 0.5), (8000.0, 0.125), default=0.4)
self.prob = prob
# 5% of the time we will return and do nothing because memory usage is
# too high.
self.mem_cutoff = CutoffEstimator(0.05)
# actually self.num_channels is no longer needed except for an assertion.
self.num_channels = num_channels
self.channel_dim = channel_dim
self.min_positive = min_positive
self.max_positive = max_positive
self.min_abs = min_abs
self.max_abs = max_abs
self.grad_scale = grad_scale
def forward(self, x: Tensor) -> Tensor:
if (
torch.jit.is_scripting()
or not x.requires_grad
or (x.is_cuda and self.mem_cutoff(torch.cuda.memory_allocated()))
):
return _no_op(x)
prob = float(self.prob)
if random.random() < prob:
# The following inner-functions convert from the way we historically
# specified these limitations, as limits on the absolute value and the
# proportion of positive values, to limits on the RMS value and
# the (mean / stddev).
def _abs_to_rms(x):
# for normally distributed data, if the expected absolute value is x,
# the expected rms value will be sqrt(pi/2) * x.
return 1.25331413732 * x
def _proportion_positive_to_mean(x):
def _atanh(x):
eps = 1.0e-10
# eps is to prevent crashes if x is exactly 0 or 1.
# we'll just end up returning a fairly large value.
return (math.log(1 + x + eps) - math.log(1 - x + eps)) / 2.0
def _approx_inverse_erf(x):
# 1 / (sqrt(pi) * ln(2)),
# see https://math.stackexchange.com/questions/321569/
# approximating-the-error-function-erf-by-analytical-functions
# this approximation is extremely crude and gets progressively worse
# for x very close to -1 or +1, but we mostly care about the
# "middle" region
# e.g. _approx_inverse_erf(0.05) = 0.0407316414078772,
# and math.erf(0.0407316414078772) = 0.045935330944660666,
# which is pretty close to 0.05.
return 0.8139535143 * _atanh(x)
# first convert x from the range 0..1 to the range -1..1 which the error
# function returns
x = -1 + (2 * x)
return _approx_inverse_erf(x)
min_mean = _proportion_positive_to_mean(float(self.min_positive))
max_mean = _proportion_positive_to_mean(float(self.max_positive))
min_rms = _abs_to_rms(float(self.min_abs))
max_rms = _abs_to_rms(float(self.max_abs))
grad_scale = float(self.grad_scale)
assert x.shape[self.channel_dim] == self.num_channels
return BalancerFunction.apply(
x,
min_mean,
max_mean,
min_rms,
max_rms,
grad_scale,
self.channel_dim,
)
else:
return _no_op(x)
def penalize_abs_values_gt(
x: Tensor, limit: float, penalty: float, name: str = None
) -> Tensor:
"""
Returns x unmodified, but in backprop will put a penalty for the excess of
the absolute values of elements of x over the limit "limit". E.g. if
limit == 10.0, then if x has any values over 10 it will get a penalty.
Caution: the value of this penalty will be affected by grad scaling used
in automatic mixed precision training. For this reasons we use this,
it shouldn't really matter, or may even be helpful; we just use this
to disallow really implausible values of scores to be given to softmax.
The name is for randomly printed debug info.
"""
x_sign = x.sign()
over_limit = (x.abs() - limit) > 0
# The following is a memory efficient way to penalize the absolute values of
# x that's over the limit. (The memory efficiency comes when you think
# about which items torch needs to cache for the autograd, and which ones it
# can throw away). The numerical value of aux_loss as computed here will
# actually be larger than it should be, by limit * over_limit.sum(), but it
# has the same derivative as the real aux_loss which is penalty * (x.abs() -
# limit).relu().
aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x)
# note: we don't do sum() here on aux)_loss, but it's as if we had done
# sum() due to how with_loss() works.
x = with_loss(x, aux_loss, name)
# you must use x for something, or this will be ineffective.
return x
def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims.
if x.ndim == 2:
return x.diag()
else:
(batch, dim, dim) = x.shape
x = x.reshape(batch, dim * dim)
x = x[:, :: dim + 1]
assert x.shape == (batch, dim)
return x
def _whitening_metric(x: Tensor, num_groups: int):
"""
Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of
of the centered feature covariance are the same within each group's covariance
matrix and also between groups.
Args:
x: a Tensor of shape (*, num_channels)
num_groups: the number of groups of channels, a number >=1 that divides
num_channels
Returns:
Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and
greater than 1.0 otherwise.
"""
assert x.dtype != torch.float16
x = x.reshape(-1, x.shape[-1])
(num_frames, num_channels) = x.shape
assert num_channels % num_groups == 0
channels_per_group = num_channels // num_groups
x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1)
# x now has shape (num_groups, num_frames, channels_per_group)
# subtract the mean so we use the centered, not uncentered, covariance.
# My experience has been that when we "mess with the gradients" like this,
# it's better not do anything that tries to move the mean around, because
# that can easily cause instability.
x = x - x.mean(dim=1, keepdim=True)
# x_covar: (num_groups, channels_per_group, channels_per_group)
x_covar = torch.matmul(x.transpose(1, 2), x)
x_covar_mean_diag = _diag(x_covar).mean()
# the following expression is what we'd get if we took the matrix product
# of each covariance and measured the mean of its trace, i.e.
# the same as _diag(torch.matmul(x_covar, x_covar)).mean().
x_covarsq_mean_diag = (x_covar**2).sum() / (num_groups * channels_per_group)
# this metric will be >= 1.0; the larger it is, the less 'white' the data was.
metric = x_covarsq_mean_diag / (x_covar_mean_diag**2 + 1.0e-20)
return metric
class WhiteningPenaltyFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, module: nn.Module) -> Tensor:
ctx.save_for_backward(x)
ctx.module = module
return x
@staticmethod
def backward(ctx, x_grad: Tensor):
(x_orig,) = ctx.saved_tensors
w = ctx.module
try:
with torch.enable_grad():
with torch.amp.autocast("cuda", enabled=False):
x_detached = x_orig.to(torch.float32).detach()
x_detached.requires_grad = True
metric = _whitening_metric(x_detached, w.num_groups)
if random.random() < 0.005 or __name__ == "__main__":
logging.debug(
f"Whitening: name={w.name}, num_groups={w.num_groups},"
f"num_channels={x_orig.shape[-1]}, "
f"metric={metric.item():.2f}"
f" vs. limit={float(w.whitening_limit)}"
)
if metric < float(w.whitening_limit):
w.prob = w.min_prob
return x_grad, None
else:
w.prob = w.max_prob
metric.backward()
penalty_grad = x_detached.grad
scale = w.grad_scale * (
x_grad.to(torch.float32).norm()
/ (penalty_grad.norm() + 1.0e-20)
)
penalty_grad = penalty_grad * scale
return x_grad + penalty_grad.to(x_grad.dtype), None
except Exception as e:
logging.info(
f"Caught exception in Whiten backward: {e}, "
f"size={list(x_grad.shape)}, will continue."
)
return x_grad, None
class Whiten(nn.Module):
def __init__(
self,
num_groups: int,
whitening_limit: FloatLike,
prob: Union[float, Tuple[float, float]],
grad_scale: FloatLike,
):
"""
Args:
num_groups: the number of groups to divide the channel dim into before
whitening. We will attempt to make the feature covariance
within each group, after mean subtraction, as "white" as possible,
while having the same trace across all groups.
whitening_limit: a value greater than 1.0, that dictates how much
freedom we have to violate the constraints. 1.0 would mean perfectly
white, with exactly the same trace across groups; larger values
give more freedom. E.g. 2.0.
prob: the probability with which we apply the gradient modification
(also affects the grad scale). May be supplied as a float,
or as a pair (min_prob, max_prob)
grad_scale: determines the scale on the gradient term from this object,
relative to the rest of the gradient on the attention weights.
E.g. 0.02 (you may want to use smaller values than this if prob is large)
"""
super(Whiten, self).__init__()
assert num_groups >= 1
assert float(whitening_limit) >= 1
assert grad_scale >= 0
self.num_groups = num_groups
self.whitening_limit = whitening_limit
self.grad_scale = grad_scale
if isinstance(prob, float):
prob = (prob, prob)
(self.min_prob, self.max_prob) = prob
assert 0 < self.min_prob <= self.max_prob <= 1
self.prob = self.max_prob
self.name = None # will be set in training loop
def forward(self, x: Tensor) -> Tensor:
"""
In the forward pass, this function just returns the input unmodified.
In the backward pass, it will modify the gradients to ensure that the
distribution in each group has close to (lambda times I) as the covariance
after mean subtraction, with the same lambda across groups.
For whitening_limit > 1, there will be more freedom to violate this
constraint.
Args:
x: the input of shape (*, num_channels)
Returns:
x, unmodified. You should make sure
you use the returned value, or the graph will be freed
and nothing will happen in backprop.
"""
grad_scale = float(self.grad_scale)
if not x.requires_grad or random.random() > self.prob or grad_scale == 0:
return _no_op(x)
else:
return WhiteningPenaltyFunction.apply(x, self)
class WithLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, y: Tensor, name: str):
ctx.y_shape = y.shape
if random.random() < 0.002 and name is not None:
loss_sum = y.sum().item()
logging.debug(f"WithLoss: name={name}, loss-sum={loss_sum:.3e}")
return x
@staticmethod
def backward(ctx, ans_grad: Tensor):
return (
ans_grad,
torch.ones(ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device),
None,
)
def with_loss(x, y, name):
# returns x but adds y.sum() to the loss function.
return WithLoss.apply(x, y, name)
class LimitParamValue(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, min: float, max: float):
ctx.save_for_backward(x)
assert max >= min
ctx.min = min
ctx.max = max
return x
@staticmethod
def backward(ctx, x_grad: Tensor):
(x,) = ctx.saved_tensors
# where x < ctx.min, ensure all grads are negative (this will tend to make
# x more positive).
x_grad = x_grad * torch.where(
torch.logical_and(x_grad > 0, x < ctx.min), -1.0, 1.0
)
# where x > ctx.max, ensure all grads are positive (this will tend to make
# x more negative).
x_grad *= torch.where(torch.logical_and(x_grad < 0, x > ctx.max), -1.0, 1.0)
return x_grad, None, None
def limit_param_value(
x: Tensor, min: float, max: float, prob: float = 0.6, training: bool = True
):
# You apply this to (typically) an nn.Parameter during training to ensure that its
# (elements mostly) stays within a supplied range. This is done by modifying the
# gradients in backprop.
# It's not necessary to do this on every batch: do it only some of the time,
# to save a little time.
if training and random.random() < prob:
return LimitParamValue.apply(x, min, max)
else:
return x
def _no_op(x: Tensor) -> Tensor:
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x
else:
# a no-op function that will have a node in the autograd graph,
# to avoid certain bugs relating to backward hooks
return x.chunk(1, dim=-1)[0]
# Identity more friendly to backward hooks than nn.Identity(), for diagnostic reasons.
class Identity(torch.nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return _no_op(x)
# Dropout2 is just like normal dropout, except it supports schedules
# on the dropout rates.
class Dropout2(nn.Module):
def __init__(self, p: FloatLike):
super().__init__()
self.p = p
def forward(self, x: Tensor) -> Tensor:
return torch.nn.functional.dropout(x, p=float(self.p), training=self.training)
class MulForDropout3(torch.autograd.Function):
# returns (x * y * alpha) where alpha is a float and y doesn't require
# grad and is zero-or-one.
@staticmethod
@custom_fwd
def forward(ctx, x, y, alpha):
assert not y.requires_grad
ans = x * y * alpha
ctx.save_for_backward(ans)
ctx.alpha = alpha
return ans
@staticmethod
@custom_bwd
def backward(ctx, ans_grad):
(ans,) = ctx.saved_tensors
x_grad = ctx.alpha * ans_grad * (ans != 0)
return x_grad, None, None
# Dropout3 is just like normal dropout, except it supports schedules on the dropout
# rates, and it lets you choose one dimension to share the dropout mask over
class Dropout3(nn.Module):
def __init__(self, p: FloatLike, shared_dim: int):
super().__init__()
self.p = p
self.shared_dim = shared_dim
def forward(self, x: Tensor) -> Tensor:
p = float(self.p)
if not self.training or p == 0:
return _no_op(x)
scale = 1.0 / (1 - p)
rand_shape = list(x.shape)
rand_shape[self.shared_dim] = 1
mask = torch.rand(*rand_shape, device=x.device) > p
ans = MulForDropout3.apply(x, mask, scale)
return ans
class SwooshLFunction(torch.autograd.Function):
"""
swoosh_l(x) = log(1 + exp(x-4)) - 0.08*x - 0.035
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
requires_grad = x.requires_grad
if x.dtype == torch.float16:
x = x.to(torch.float32)
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
coeff = -0.08
with torch.amp.autocast("cuda", enabled=False):
with torch.enable_grad():
x = x.detach()
x.requires_grad = True
y = torch.logaddexp(zero, x - 4.0) + coeff * x - 0.035
if not requires_grad:
return y
y.backward(gradient=torch.ones_like(y))
grad = x.grad
floor = coeff
ceil = 1.0 + coeff + 0.005
d_scaled = (grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
grad
)
if __name__ == "__main__":
# for self-testing only.
assert d_scaled.min() >= 0.0
assert d_scaled.max() < 256.0
d_int = d_scaled.to(torch.uint8)
ctx.save_for_backward(d_int)
if x.dtype == torch.float16 or torch.is_autocast_enabled():
y = y.to(torch.float16)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
(d,) = ctx.saved_tensors
# the same constants as used in forward pass.
coeff = -0.08
floor = coeff
ceil = 1.0 + coeff + 0.005
d = d * ((ceil - floor) / 255.0) + floor
return y_grad * d
class SwooshL(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return Swoosh-L activation."""
if torch.jit.is_scripting() or torch.jit.is_tracing():
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
return logaddexp(zero, x - 4.0) - 0.08 * x - 0.035
return SwooshLFunction.apply(x)
class SwooshLOnnx(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return Swoosh-L activation."""
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
return logaddexp_onnx(zero, x - 4.0) - 0.08 * x - 0.035
class SwooshRFunction(torch.autograd.Function):
"""
swoosh_r(x) = log(1 + exp(x-1)) - 0.08*x - 0.313261687
derivatives are between -0.08 and 0.92.
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
requires_grad = x.requires_grad
if x.dtype == torch.float16:
x = x.to(torch.float32)
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
with torch.amp.autocast("cuda", enabled=False):
with torch.enable_grad():
x = x.detach()
x.requires_grad = True
y = torch.logaddexp(zero, x - 1.0) - 0.08 * x - 0.313261687
if not requires_grad:
return y
y.backward(gradient=torch.ones_like(y))
grad = x.grad
floor = -0.08
ceil = 0.925
d_scaled = (grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
grad
)
if __name__ == "__main__":
# for self-testing only.
assert d_scaled.min() >= 0.0
assert d_scaled.max() < 256.0
d_int = d_scaled.to(torch.uint8)
ctx.save_for_backward(d_int)
if x.dtype == torch.float16 or torch.is_autocast_enabled():
y = y.to(torch.float16)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
(d,) = ctx.saved_tensors
# the same constants as used in forward pass.
floor = -0.08
ceil = 0.925
d = d * ((ceil - floor) / 255.0) + floor
return y_grad * d
class SwooshR(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return Swoosh-R activation."""
if torch.jit.is_scripting() or torch.jit.is_tracing():
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
return logaddexp(zero, x - 1.0) - 0.08 * x - 0.313261687
return SwooshRFunction.apply(x)
class SwooshROnnx(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return Swoosh-R activation."""
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
return logaddexp_onnx(zero, x - 1.0) - 0.08 * x - 0.313261687
# simple version of SwooshL that does not redefine the backprop, used in
# ActivationDropoutAndLinearFunction.
def SwooshLForward(x: Tensor):
with torch.amp.autocast("cuda", enabled=False):
x = x.to(torch.float32)
x_offset = x - 4.0
log_sum = (1.0 + x_offset.exp()).log().to(x.dtype)
log_sum = torch.where(log_sum == float("inf"), x_offset, log_sum)
return log_sum - 0.08 * x - 0.035
# simple version of SwooshR that does not redefine the backprop, used in
# ActivationDropoutAndLinearFunction.
def SwooshRForward(x: Tensor):
with torch.amp.autocast("cuda", enabled=False):
x = x.to(torch.float32)
x_offset = x - 1.0
log_sum = (1.0 + x_offset.exp()).log().to(x.dtype)
log_sum = torch.where(log_sum == float("inf"), x_offset, log_sum)
return log_sum - 0.08 * x - 0.313261687
class ActivationDropoutAndLinearFunction(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(
ctx,
x: Tensor,
weight: Tensor,
bias: Optional[Tensor],
activation: str,
dropout_p: float,
dropout_shared_dim: Optional[int],
):
if dropout_p != 0.0:
dropout_shape = list(x.shape)
if dropout_shared_dim is not None:
dropout_shape[dropout_shared_dim] = 1
# else it won't be very memory efficient.
dropout_mask = (1.0 / (1.0 - dropout_p)) * (
torch.rand(*dropout_shape, device=x.device, dtype=x.dtype) > dropout_p
)
else:
dropout_mask = None
ctx.save_for_backward(x, weight, bias, dropout_mask)
ctx.activation = activation
forward_activation_dict = {
"SwooshL": k2.swoosh_l_forward,
"SwooshR": k2.swoosh_r_forward,
}
# it will raise a KeyError if this fails. This will be an error. We let it
# propagate to the user.
activation_func = forward_activation_dict[activation]
x = activation_func(x)
if dropout_mask is not None:
x = x * dropout_mask
x = torch.nn.functional.linear(x, weight, bias)
return x
@staticmethod
@custom_bwd
def backward(ctx, ans_grad: Tensor):
saved = ctx.saved_tensors
(x, weight, bias, dropout_mask) = saved
forward_and_deriv_activation_dict = {
"SwooshL": k2.swoosh_l_forward_and_deriv,
"SwooshR": k2.swoosh_r_forward_and_deriv,
}
# the following lines a KeyError if the activation is unrecognized.
# This will be an error. We let it propagate to the user.
func = forward_and_deriv_activation_dict[ctx.activation]
y, func_deriv = func(x)
if dropout_mask is not None:
y = y * dropout_mask
# now compute derivative of y w.r.t. weight and bias..
# y: (..., in_channels), ans_grad: (..., out_channels),
(out_channels, in_channels) = weight.shape
in_channels = y.shape[-1]
g = ans_grad.reshape(-1, out_channels)
weight_deriv = torch.matmul(g.t(), y.reshape(-1, in_channels))
y_deriv = torch.matmul(ans_grad, weight)
bias_deriv = None if bias is None else g.sum(dim=0)
x_deriv = y_deriv * func_deriv
if dropout_mask is not None:
# order versus func_deriv does not matter
x_deriv = x_deriv * dropout_mask
return x_deriv, weight_deriv, bias_deriv, None, None, None
class ActivationDropoutAndLinear(torch.nn.Module):
"""
This merges an activation function followed by dropout and then a nn.Linear module;
it does so in a memory efficient way so that it only stores the input to the whole
module. If activation == SwooshL and dropout_shared_dim != None, this will be
equivalent to:
nn.Sequential(SwooshL(),
Dropout3(dropout_p, shared_dim=dropout_shared_dim),
ScaledLinear(in_channels, out_channels, bias=bias,
initial_scale=initial_scale))
If dropout_shared_dim is None, the dropout would be equivalent to
Dropout2(dropout_p). Note: Dropout3 will be more memory efficient as the dropout
mask is smaller.
Args:
in_channels: number of input channels, e.g. 256
out_channels: number of output channels, e.g. 256
bias: if true, have a bias
activation: the activation function, for now just support SwooshL.
dropout_p: the dropout probability or schedule (happens after nonlinearity).
dropout_shared_dim: the dimension, if any, across which the dropout mask is
shared (e.g. the time dimension). If None, this may be less memory
efficient if there are modules before this one that cache the input
for their backprop (e.g. Balancer or Whiten).
"""
def __init__(
self,
in_channels: int,
out_channels: int,
bias: bool = True,
activation: str = "SwooshL",
dropout_p: FloatLike = 0.0,
dropout_shared_dim: Optional[int] = -1,
initial_scale: float = 1.0,
):
super().__init__()
# create a temporary module of nn.Linear that we'll steal the
# weights and bias from
l = ScaledLinear(
in_channels, out_channels, bias=bias, initial_scale=initial_scale
)
self.weight = l.weight
# register_parameter properly handles making it a parameter when l.bias
# is None. I think there is some reason for doing it this way rather
# than just setting it to None but I don't know what it is, maybe
# something to do with exporting the module..
self.register_parameter("bias", l.bias)
self.activation = activation
self.dropout_p = dropout_p
self.dropout_shared_dim = dropout_shared_dim
def forward(self, x: Tensor):
if (
torch.jit.is_scripting()
or torch.jit.is_tracing()
or "k2" not in sys.modules
):
if self.activation == "SwooshL":
x = SwooshLForward(x)
elif self.activation == "SwooshR":
x = SwooshRForward(x)
else:
assert False, self.activation
return torch.nn.functional.linear(x, self.weight, self.bias)
return ActivationDropoutAndLinearFunction.apply(
x,
self.weight,
self.bias,
self.activation,
float(self.dropout_p),
self.dropout_shared_dim,
)
def _test_whiten():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"_test_whiten(): proportion = {proportion}")
x = torch.randn(100, 128)
direction = torch.randn(128)
coeffs = torch.randn(100, 1)
x += proportion * direction * coeffs
x.requires_grad = True
m = Whiten(
1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit,
) # grad_scale
for _ in range(4):
y = m(x)
y_grad = torch.randn_like(x)
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)
def _test_balancer_sign():
probs = torch.arange(0, 1, 0.01)
N = 1000
x = 1.0 * ((2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0)
x = x.detach()
x.requires_grad = True
m = Balancer(
probs.numel(),
channel_dim=0,
min_positive=0.05,
max_positive=0.95,
min_abs=0.0,
prob=1.0,
)
y_grad = torch.sign(torch.randn(probs.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_balancer_sign: x = ", x)
print("_test_balancer_sign: y grad = ", y_grad)
print("_test_balancer_sign: x grad = ", x.grad)
def _test_balancer_magnitude():
magnitudes = torch.arange(0, 1, 0.01)
N = 1000
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1)
x = x.detach()
x.requires_grad = True
m = Balancer(
magnitudes.numel(),
channel_dim=0,
min_positive=0.0,
max_positive=1.0,
min_abs=0.2,
max_abs=0.7,
prob=1.0,
)
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_balancer_magnitude: x = ", x)
print("_test_balancer_magnitude: y grad = ", y_grad)
print("_test_balancer_magnitude: x grad = ", x.grad)
def _test_swooshl_deriv():
x = torch.randn(10, 12, dtype=torch.double) * 3.0
x.requires_grad = True
m = SwooshL()
tol = 1.0 / 255.0
torch.autograd.gradcheck(m, x, atol=tol, eps=0.01)
# for self-test.
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
x.requires_grad = True
y = m(x)
return y
def _test_swooshr_deriv():
x = torch.randn(10, 12, dtype=torch.double) * 3.0
x.requires_grad = True
m = SwooshR()
tol = 1.0 / 255.0
torch.autograd.gradcheck(m, x, atol=tol, eps=0.01)
# for self-test.
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
x.requires_grad = True
y = m(x)
return y
def _test_softmax():
a = torch.randn(2, 10, dtype=torch.float64)
b = a.clone()
a.requires_grad = True
b.requires_grad = True
a.softmax(dim=1)[:, 0].sum().backward()
print("a grad = ", a.grad)
softmax(b, dim=1)[:, 0].sum().backward()
print("b grad = ", b.grad)
assert torch.allclose(a.grad, b.grad)
def _test_piecewise_linear():
p = PiecewiseLinear((0, 10.0))
for x in [-100, 0, 100]:
assert p(x) == 10.0
p = PiecewiseLinear((0, 10.0), (1, 0.0))
for x, y in [(-100, 10.0), (0, 10.0), (0.5, 5.0), (1, 0.0), (2, 0.0)]:
print("x, y = ", x, y)
assert p(x) == y, (x, p(x), y)
q = PiecewiseLinear((0.5, 15.0), (0.6, 1.0))
x_vals = [-1.0, 0.0, 0.1, 0.2, 0.5, 0.6, 0.7, 0.9, 1.0, 2.0]
pq = p.max(q)
for x in x_vals:
y1 = max(p(x), q(x))
y2 = pq(x)
assert abs(y1 - y2) < 0.001
pq = p.min(q)
for x in x_vals:
y1 = min(p(x), q(x))
y2 = pq(x)
assert abs(y1 - y2) < 0.001
pq = p + q
for x in x_vals:
y1 = p(x) + q(x)
y2 = pq(x)
assert abs(y1 - y2) < 0.001
def _test_activation_dropout_and_linear():
in_channels = 20
out_channels = 30
for bias in [True, False]:
# actually we don't test for dropout_p != 0.0 because forward functions will
# different answers. This is because we are using the k2 implementation of
# swoosh_l an swoosh_r inside SwooshL() and SwooshR(), and they call randn()
# internally, messing up the random state.
for dropout_p in [0.0]:
for activation in ["SwooshL", "SwooshR"]:
m1 = nn.Sequential(
SwooshL() if activation == "SwooshL" else SwooshR(),
Dropout3(p=dropout_p, shared_dim=-1),
ScaledLinear(
in_channels, out_channels, bias=bias, initial_scale=0.5
),
)
m2 = ActivationDropoutAndLinear(
in_channels,
out_channels,
bias=bias,
initial_scale=0.5,
activation=activation,
dropout_p=dropout_p,
)
with torch.no_grad():
m2.weight[:] = m1[2].weight
if bias:
m2.bias[:] = m1[2].bias
# make sure forward gives same result.
x1 = torch.randn(10, in_channels)
x1.requires_grad = True
# TEMP.
assert torch.allclose(
SwooshRFunction.apply(x1), SwooshRForward(x1), atol=1.0e-03
)
x2 = x1.clone().detach()
x2.requires_grad = True
seed = 10
torch.manual_seed(seed)
y1 = m1(x1)
y_grad = torch.randn_like(y1)
y1.backward(gradient=y_grad)
torch.manual_seed(seed)
y2 = m2(x2)
y2.backward(gradient=y_grad)
print(
f"bias = {bias}, dropout_p = {dropout_p}, activation = {activation}"
)
print("y1 = ", y1)
print("y2 = ", y2)
assert torch.allclose(y1, y2, atol=0.02)
assert torch.allclose(m1[2].weight.grad, m2.weight.grad, atol=1.0e-05)
if bias:
assert torch.allclose(m1[2].bias.grad, m2.bias.grad, atol=1.0e-05)
print("x1.grad = ", x1.grad)
print("x2.grad = ", x2.grad)
def isclose(a, b):
# return true if cosine similarity is > 0.9.
return (a * b).sum() > 0.9 * (
(a**2).sum() * (b**2).sum()
).sqrt()
# the SwooshL() implementation has a noisy gradient due to 1-byte
# storage of it.
assert isclose(x1.grad, x2.grad)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.DEBUG)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_piecewise_linear()
_test_softmax()
_test_whiten()
_test_balancer_sign()
_test_balancer_magnitude()
_test_swooshr_deriv()
_test_swooshl_deriv()
_test_activation_dropout_and_linear()
|