File size: 63,017 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 |
#!/usr/bin/env python3
# Copyright 2022-2024 Xiaomi Corp. (authors: Daniel Povey,
# Zengwei Yao,
# Wei Kang
# Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
import math
import random
from typing import Optional, Tuple, Union
import torch
from torch import Tensor, nn
from zipvoice.models.modules.scaling import (
ActivationDropoutAndLinear,
Balancer,
BiasNorm,
Dropout2,
FloatLike,
Identity,
ScaledLinear,
ScheduledFloat,
SwooshR,
Whiten,
limit_param_value,
penalize_abs_values_gt,
softmax,
)
def timestep_embedding(timesteps, dim, max_period=10000):
"""Create sinusoidal timestep embeddings.
:param timesteps: shape of (N) or (N, T)
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an Tensor of positional embeddings. shape of (N, dim) or (T, N, dim)
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device)
/ half
)
if timesteps.dim() == 2:
timesteps = timesteps.transpose(0, 1) # (N, T) -> (T, N)
args = timesteps[..., None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[..., :1])], dim=-1)
return embedding
class TTSZipformer(nn.Module):
"""
Args:
Note: all "int or Tuple[int]" arguments below will be treated as lists of the same
length as downsampling_factor if they are single ints or one-element tuples.
The length of downsampling_factor defines the number of stacks.
downsampling_factor (Tuple[int]): downsampling factor for each encoder stack.
Note: this is in addition to the downsampling factor of 2 that is applied in
the frontend (self.encoder_embed).
encoder_dim (Tuple[int]): embedding dimension of each of the encoder stacks,
one per encoder stack.
num_encoder_layers (int or Tuple[int])): number of encoder layers for each stack
query_head_dim (int or Tuple[int]): dimension of query and key per attention
head: per stack, if a tuple..
pos_head_dim (int or Tuple[int]): dimension of positional-encoding projection
per attention head
value_head_dim (int or Tuple[int]): dimension of value in each attention head
num_heads: (int or Tuple[int]): number of heads in the self-attention mechanism.
Must be at least 4.
feedforward_dim (int or Tuple[int]): hidden dimension in feedforward modules
cnn_module_kernel (int or Tuple[int])): Kernel size of convolution module
pos_dim (int): the dimension of each positional-encoding vector prior to
projection, e.g. 128.
dropout (float): dropout rate
warmup_batches (float): number of batches to warm up over; this controls
dropout of encoder layers.
use_time_embed: (bool): if True, take time embedding as an additional input.
time_embed_dim: (int): the dimension of the time embedding.
use_guidance_scale_embed (bool): if True, take guidance scale embedding as
an additional input.
guidance_scale_embed_dim: (int): the dimension of the guidance scale embedding.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
downsampling_factor: Union[int, Tuple[int]] = (2, 4),
num_encoder_layers: Union[int, Tuple[int]] = 4,
cnn_module_kernel: Union[int, Tuple[int]] = 31,
encoder_dim: int = 384,
query_head_dim: int = 24,
pos_head_dim: int = 4,
value_head_dim: int = 12,
num_heads: int = 8,
feedforward_dim: int = 1536,
pos_dim: int = 192,
dropout: FloatLike = None, # see code below for default
warmup_batches: float = 4000.0,
use_time_embed: bool = True,
time_embed_dim: int = 192,
use_guidance_scale_embed: bool = False,
guidance_scale_embed_dim: int = 192,
use_conv: bool = True,
) -> None:
super(TTSZipformer, self).__init__()
if dropout is None:
dropout = ScheduledFloat((0.0, 0.3), (20000.0, 0.1))
if isinstance(downsampling_factor, int):
downsampling_factor = (downsampling_factor,)
def _to_tuple(x):
"""Converts a single int or a 1-tuple of an int to a tuple with the same
length as downsampling_factor"""
if isinstance(x, int):
x = (x,)
if len(x) == 1:
x = x * len(downsampling_factor)
else:
assert len(x) == len(downsampling_factor) and isinstance(x[0], int)
return x
def _assert_downsampling_factor(factors):
"""assert downsampling_factor follows u-net style"""
assert factors[0] == 1 and factors[-1] == 1
for i in range(1, len(factors) // 2 + 1):
assert factors[i] == factors[i - 1] * 2
for i in range(len(factors) // 2 + 1, len(factors)):
assert factors[i] * 2 == factors[i - 1]
_assert_downsampling_factor(downsampling_factor)
self.downsampling_factor = downsampling_factor # tuple
num_encoder_layers = _to_tuple(num_encoder_layers)
self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel)
self.encoder_dim = encoder_dim
self.num_encoder_layers = num_encoder_layers
self.query_head_dim = query_head_dim
self.value_head_dim = value_head_dim
self.num_heads = num_heads
self.use_time_embed = use_time_embed
self.use_guidance_scale_embed = use_guidance_scale_embed
self.time_embed_dim = time_embed_dim
if self.use_time_embed:
assert time_embed_dim != -1
else:
time_embed_dim = -1
self.guidance_scale_embed_dim = guidance_scale_embed_dim
self.in_proj = nn.Linear(in_dim, encoder_dim)
self.out_proj = nn.Linear(encoder_dim, out_dim)
# each one will be Zipformer2Encoder or DownsampledZipformer2Encoder
encoders = []
num_encoders = len(downsampling_factor)
for i in range(num_encoders):
encoder_layer = Zipformer2EncoderLayer(
embed_dim=encoder_dim,
pos_dim=pos_dim,
num_heads=num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
value_head_dim=value_head_dim,
feedforward_dim=feedforward_dim,
use_conv=use_conv,
cnn_module_kernel=cnn_module_kernel[i],
dropout=dropout,
)
# For the segment of the warmup period, we let the Conv2dSubsampling
# layer learn something. Then we start to warm up the other encoders.
encoder = Zipformer2Encoder(
encoder_layer,
num_encoder_layers[i],
embed_dim=encoder_dim,
time_embed_dim=time_embed_dim,
pos_dim=pos_dim,
warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1),
warmup_end=warmup_batches * (i + 2) / (num_encoders + 1),
final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5),
)
if downsampling_factor[i] != 1:
encoder = DownsampledZipformer2Encoder(
encoder,
dim=encoder_dim,
downsample=downsampling_factor[i],
)
encoders.append(encoder)
self.encoders = nn.ModuleList(encoders)
if self.use_time_embed:
self.time_embed = nn.Sequential(
nn.Linear(time_embed_dim, time_embed_dim * 2),
SwooshR(),
nn.Linear(time_embed_dim * 2, time_embed_dim),
)
else:
self.time_embed = None
if self.use_guidance_scale_embed:
self.guidance_scale_embed = ScaledLinear(
guidance_scale_embed_dim,
time_embed_dim,
bias=False,
initial_scale=0.1,
)
else:
self.guidance_scale_embed = None
def forward(
self,
x: Tensor,
t: Optional[Tensor] = None,
padding_mask: Optional[Tensor] = None,
guidance_scale: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
"""
Args:
x:
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
t:
A t tensor of shape (batch_size,) or (batch_size, seq_len)
padding_mask:
The mask for padding, of shape (batch_size, seq_len); True means
masked position. May be None.
guidance_scale:
The guidance scale in classifier-free guidance of distillation model.
Returns:
Return the output embeddings. its shape is
(batch_size, output_seq_len, encoder_dim)
"""
x = x.permute(1, 0, 2)
x = self.in_proj(x)
if t is not None:
assert t.dim() == 1 or t.dim() == 2, t.shape
time_emb = timestep_embedding(t, self.time_embed_dim)
if guidance_scale is not None:
assert (
guidance_scale.dim() == 1 or guidance_scale.dim() == 2
), guidance_scale.shape
guidance_scale_emb = self.guidance_scale_embed(
timestep_embedding(guidance_scale, self.guidance_scale_embed_dim)
)
time_emb = time_emb + guidance_scale_emb
time_emb = self.time_embed(time_emb)
else:
time_emb = None
attn_mask = None
for i, module in enumerate(self.encoders):
x = module(
x,
time_emb=time_emb,
src_key_padding_mask=padding_mask,
attn_mask=attn_mask,
)
x = self.out_proj(x)
x = x.permute(1, 0, 2)
return x
def _whitening_schedule(x: float, ratio: float = 2.0) -> ScheduledFloat:
return ScheduledFloat((0.0, x), (20000.0, ratio * x), default=x)
class Zipformer2EncoderLayer(nn.Module):
"""
Args:
embed_dim: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
feedforward_dim: the dimension of the feedforward network model (required).
dropout: the dropout value (default=0.1).
cnn_module_kernel (int): Kernel size of convolution module (default=31).
Examples::
>>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> pos_emb = torch.rand(32, 19, 512)
>>> out = encoder_layer(src, pos_emb)
"""
def __init__(
self,
embed_dim: int,
pos_dim: int,
num_heads: int,
query_head_dim: int,
pos_head_dim: int,
value_head_dim: int,
feedforward_dim: int,
dropout: FloatLike = 0.1,
cnn_module_kernel: int = 31,
use_conv: bool = True,
attention_skip_rate: FloatLike = ScheduledFloat(
(0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0
),
conv_skip_rate: FloatLike = ScheduledFloat(
(0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0
),
const_attention_rate: FloatLike = ScheduledFloat(
(0.0, 0.25), (4000.0, 0.025), default=0
),
ff2_skip_rate: FloatLike = ScheduledFloat(
(0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0)
),
ff3_skip_rate: FloatLike = ScheduledFloat(
(0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0)
),
bypass_skip_rate: FloatLike = ScheduledFloat(
(0.0, 0.5), (4000.0, 0.02), default=0
),
) -> None:
super(Zipformer2EncoderLayer, self).__init__()
self.embed_dim = embed_dim
# self.bypass implements layer skipping as well as bypass.
self.bypass = BypassModule(
embed_dim, skip_rate=bypass_skip_rate, straight_through_rate=0
)
# bypass_mid is bypass used in the middle of the layer.
self.bypass_mid = BypassModule(embed_dim, straight_through_rate=0)
# skip probability for dynamic modules (meaning: anything but feedforward).
self.attention_skip_rate = copy.deepcopy(attention_skip_rate)
# an additional skip probability that applies to ConvModule to stop it from
# contributing too much early on.
self.conv_skip_rate = copy.deepcopy(conv_skip_rate)
# ff2_skip_rate is to prevent the ff2 module from having output that's too big
# compared to its residual.
self.ff2_skip_rate = copy.deepcopy(ff2_skip_rate)
self.ff3_skip_rate = copy.deepcopy(ff3_skip_rate)
self.const_attention_rate = copy.deepcopy(const_attention_rate)
self.self_attn_weights = RelPositionMultiheadAttentionWeights(
embed_dim,
pos_dim=pos_dim,
num_heads=num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
dropout=0.0,
)
self.self_attn1 = SelfAttention(embed_dim, num_heads, value_head_dim)
self.self_attn2 = SelfAttention(embed_dim, num_heads, value_head_dim)
self.feed_forward1 = FeedforwardModule(
embed_dim, (feedforward_dim * 3) // 4, dropout
)
self.feed_forward2 = FeedforwardModule(embed_dim, feedforward_dim, dropout)
self.feed_forward3 = FeedforwardModule(
embed_dim, (feedforward_dim * 5) // 4, dropout
)
self.nonlin_attention = NonlinAttention(
embed_dim, hidden_channels=3 * embed_dim // 4
)
self.use_conv = use_conv
if self.use_conv:
self.conv_module1 = ConvolutionModule(embed_dim, cnn_module_kernel)
self.conv_module2 = ConvolutionModule(embed_dim, cnn_module_kernel)
self.norm = BiasNorm(embed_dim)
self.balancer1 = Balancer(
embed_dim,
channel_dim=-1,
min_positive=0.45,
max_positive=0.55,
min_abs=0.2,
max_abs=4.0,
)
# balancer for output of NonlinAttentionModule
self.balancer_na = Balancer(
embed_dim,
channel_dim=-1,
min_positive=0.3,
max_positive=0.7,
min_abs=ScheduledFloat((0.0, 0.004), (4000.0, 0.02)),
prob=0.05, # out of concern for memory usage
)
# balancer for output of feedforward2, prevent it from staying too
# small. give this a very small probability, even at the start of
# training, it's to fix a rare problem and it's OK to fix it slowly.
self.balancer_ff2 = Balancer(
embed_dim,
channel_dim=-1,
min_positive=0.3,
max_positive=0.7,
min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.1), default=0.0),
max_abs=2.0,
prob=0.05,
)
self.balancer_ff3 = Balancer(
embed_dim,
channel_dim=-1,
min_positive=0.3,
max_positive=0.7,
min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.2), default=0.0),
max_abs=4.0,
prob=0.05,
)
self.whiten = Whiten(
num_groups=1,
whitening_limit=_whitening_schedule(4.0, ratio=3.0),
prob=(0.025, 0.25),
grad_scale=0.01,
)
self.balancer2 = Balancer(
embed_dim,
channel_dim=-1,
min_positive=0.45,
max_positive=0.55,
min_abs=0.1,
max_abs=4.0,
)
def get_sequence_dropout_mask(
self, x: Tensor, dropout_rate: float
) -> Optional[Tensor]:
if (
dropout_rate == 0.0
or not self.training
or torch.jit.is_scripting()
or torch.jit.is_tracing()
):
return None
batch_size = x.shape[1]
mask = (torch.rand(batch_size, 1, device=x.device) > dropout_rate).to(x.dtype)
return mask
def sequence_dropout(self, x: Tensor, dropout_rate: float) -> Tensor:
"""
Apply sequence-level dropout to x.
x shape: (seq_len, batch_size, embed_dim)
"""
dropout_mask = self.get_sequence_dropout_mask(x, dropout_rate)
if dropout_mask is None:
return x
else:
return x * dropout_mask
def forward(
self,
src: Tensor,
pos_emb: Tensor,
time_emb: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
"""
Pass the input through the encoder layer.
Args:
src: the sequence to the encoder (required):
shape (seq_len, batch_size, embedding_dim).
pos_emb: (1, 2*seq_len-1, pos_emb_dim) or
(batch_size, 2*seq_len-1, pos_emb_dim)
time_emb: the embedding representing the current timestep
shape (batch_size, embedding_dim) or (seq_len, batch_size, embedding_dim).
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len)
or (seq_len, seq_len), interpreted as (batch_size, tgt_seq_len, src_seq_len)
or (tgt_seq_len, src_seq_len). True means masked position. May be None.
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len);
True means masked position. May be None.
Returns:
A tensor which has the same shape as src
"""
src_orig = src
# dropout rate for non-feedforward submodules
if torch.jit.is_scripting() or torch.jit.is_tracing():
attention_skip_rate = 0.0
else:
attention_skip_rate = (
float(self.attention_skip_rate) if self.training else 0.0
)
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
attn_weights = self.self_attn_weights(
src,
pos_emb=pos_emb,
attn_mask=attn_mask,
key_padding_mask=src_key_padding_mask,
)
if time_emb is not None:
src = src + time_emb
src = src + self.feed_forward1(src)
self_attn_dropout_mask = self.get_sequence_dropout_mask(
src, attention_skip_rate
)
selected_attn_weights = attn_weights[0:1]
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif self.training and random.random() < float(self.const_attention_rate):
# Make attention weights constant. The intention is to
# encourage these modules to do something similar to an
# averaging-over-time operation.
# only need the mask, can just use the 1st one and expand later
selected_attn_weights = selected_attn_weights[0:1]
selected_attn_weights = (selected_attn_weights > 0.0).to(
selected_attn_weights.dtype
)
selected_attn_weights = selected_attn_weights * (
1.0 / selected_attn_weights.sum(dim=-1, keepdim=True)
)
na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights))
src = src + (
na if self_attn_dropout_mask is None else na * self_attn_dropout_mask
)
self_attn = self.self_attn1(src, attn_weights)
src = src + (
self_attn
if self_attn_dropout_mask is None
else self_attn * self_attn_dropout_mask
)
if self.use_conv:
if torch.jit.is_scripting() or torch.jit.is_tracing():
conv_skip_rate = 0.0
else:
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0
if time_emb is not None:
src = src + time_emb
src = src + self.sequence_dropout(
self.conv_module1(
src,
src_key_padding_mask=src_key_padding_mask,
),
conv_skip_rate,
)
if torch.jit.is_scripting() or torch.jit.is_tracing():
ff2_skip_rate = 0.0
else:
ff2_skip_rate = float(self.ff2_skip_rate) if self.training else 0.0
src = src + self.sequence_dropout(
self.balancer_ff2(self.feed_forward2(src)), ff2_skip_rate
)
# bypass in the middle of the layer.
src = self.bypass_mid(src_orig, src)
self_attn = self.self_attn2(src, attn_weights)
src = src + (
self_attn
if self_attn_dropout_mask is None
else self_attn * self_attn_dropout_mask
)
if self.use_conv:
if torch.jit.is_scripting() or torch.jit.is_tracing():
conv_skip_rate = 0.0
else:
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0
if time_emb is not None:
src = src + time_emb
src = src + self.sequence_dropout(
self.conv_module2(
src,
src_key_padding_mask=src_key_padding_mask,
),
conv_skip_rate,
)
if torch.jit.is_scripting() or torch.jit.is_tracing():
ff3_skip_rate = 0.0
else:
ff3_skip_rate = float(self.ff3_skip_rate) if self.training else 0.0
src = src + self.sequence_dropout(
self.balancer_ff3(self.feed_forward3(src)), ff3_skip_rate
)
src = self.balancer1(src)
src = self.norm(src)
src = self.bypass(src_orig, src)
src = self.balancer2(src)
src = self.whiten(src)
return src
class Zipformer2Encoder(nn.Module):
r"""Zipformer2Encoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the Zipformer2EncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
pos_dim: the dimension for the relative positional encoding
Examples::
>>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8)
>>> zipformer_encoder = Zipformer2Encoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = zipformer_encoder(src)
"""
def __init__(
self,
encoder_layer: nn.Module,
num_layers: int,
embed_dim: int,
time_embed_dim: int,
pos_dim: int,
warmup_begin: float,
warmup_end: float,
initial_layerdrop_rate: float = 0.5,
final_layerdrop_rate: float = 0.05,
) -> None:
super().__init__()
self.encoder_pos = CompactRelPositionalEncoding(
pos_dim, dropout_rate=0.15, length_factor=1.0
)
if time_embed_dim != -1:
self.time_emb = nn.Sequential(
SwooshR(),
nn.Linear(time_embed_dim, embed_dim),
)
else:
self.time_emb = None
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
)
self.num_layers = num_layers
assert 0 <= warmup_begin <= warmup_end
delta = (1.0 / num_layers) * (warmup_end - warmup_begin)
cur_begin = warmup_begin # interpreted as a training batch index
for i in range(num_layers):
cur_end = cur_begin + delta
self.layers[i].bypass.skip_rate = ScheduledFloat(
(cur_begin, initial_layerdrop_rate),
(cur_end, final_layerdrop_rate),
default=0.0,
)
cur_begin = cur_end
def forward(
self,
src: Tensor,
time_emb: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required):
shape (seq_len, batch_size, embedding_dim).
time_emb: the embedding representing the current timestep:
shape (batch_size, embedding_dim)
or (seq_len, batch_size, embedding_dim) .
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len)
or (seq_len, seq_len), interpreted as
(batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
True means masked position. May be None.
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len);
True means masked position. May be None.
Returns: a Tensor with the same shape as src.
"""
pos_emb = self.encoder_pos(src)
if self.time_emb is not None:
assert time_emb is not None
time_emb = self.time_emb(time_emb)
else:
assert time_emb is None
output = src
for i, mod in enumerate(self.layers):
output = mod(
output,
pos_emb,
time_emb=time_emb,
attn_mask=attn_mask,
src_key_padding_mask=src_key_padding_mask,
)
return output
class BypassModule(nn.Module):
"""
An nn.Module that implements a learnable bypass scale, and also randomized
per-sequence layer-skipping. The bypass is limited during early stages of training
to be close to "straight-through", i.e. to not do the bypass operation much
initially, in order to force all the modules to learn something.
"""
def __init__(
self,
embed_dim: int,
skip_rate: FloatLike = 0.0,
straight_through_rate: FloatLike = 0.0,
scale_min: FloatLike = ScheduledFloat((0.0, 0.9), (20000.0, 0.2), default=0),
scale_max: FloatLike = 1.0,
):
super().__init__()
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))
self.skip_rate = copy.deepcopy(skip_rate)
self.straight_through_rate = copy.deepcopy(straight_through_rate)
self.scale_min = copy.deepcopy(scale_min)
self.scale_max = copy.deepcopy(scale_max)
def _get_bypass_scale(self, batch_size: int):
# returns bypass-scale of shape (num_channels,),
# or (batch_size, num_channels,). This is actually the
# scale on the non-residual term, so 0 corresponds to bypassing
# this module.
if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training:
return self.bypass_scale
else:
ans = limit_param_value(
self.bypass_scale,
min=float(self.scale_min),
max=float(self.scale_max),
)
skip_rate = float(self.skip_rate)
if skip_rate != 0.0:
mask = torch.rand((batch_size, 1), device=ans.device) > skip_rate
ans = ans * mask
# now ans is of shape (batch_size, num_channels), and is zero for
# sequences on which we have randomly chosen to do layer-skipping.
straight_through_rate = float(self.straight_through_rate)
if straight_through_rate != 0.0:
mask = (
torch.rand((batch_size, 1), device=ans.device)
< straight_through_rate
)
ans = torch.maximum(ans, mask.to(ans.dtype))
return ans
def forward(self, src_orig: Tensor, src: Tensor):
"""
Args: src_orig and src are both of shape (seq_len, batch_size, num_channels)
Returns: something with the same shape as src and src_orig
"""
bypass_scale = self._get_bypass_scale(src.shape[1])
return src_orig + (src - src_orig) * bypass_scale
class DownsampledZipformer2Encoder(nn.Module):
r"""
DownsampledZipformer2Encoder is a zipformer encoder evaluated at a reduced frame
rate, after convolutional downsampling, and then upsampled again at the output, and
combined with the origin input, so that the output has the same shape as the input.
"""
def __init__(self, encoder: nn.Module, dim: int, downsample: int):
super(DownsampledZipformer2Encoder, self).__init__()
self.downsample_factor = downsample
self.downsample = SimpleDownsample(downsample)
self.num_layers = encoder.num_layers
self.encoder = encoder
self.upsample = SimpleUpsample(downsample)
self.out_combiner = BypassModule(dim, straight_through_rate=0)
def forward(
self,
src: Tensor,
time_emb: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
r"""Downsample, go through encoder, upsample.
Args:
src: the sequence to the encoder (required):
shape (seq_len, batch_size, embedding_dim).
time_emb: the embedding representing the current timestep:
shape (batch_size, embedding_dim)
or (seq_len, batch_size, embedding_dim) .
feature_mask: something that broadcasts with src, that we'll multiply `src`
by at every layer: if a Tensor, likely of shape
(seq_len, batch_size, embedding_dim)
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len)
or (seq_len, seq_len), interpreted as
(batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
True means masked position. May be None.
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len);
True means masked position. May be None.
Returns: a Tensor with the same shape as src.
"""
src_orig = src
src = self.downsample(src)
ds = self.downsample_factor
if time_emb is not None and time_emb.dim() == 3:
time_emb = time_emb[::ds]
if attn_mask is not None:
attn_mask = attn_mask[::ds, ::ds]
if src_key_padding_mask is not None:
src_key_padding_mask = src_key_padding_mask[..., ::ds]
src = self.encoder(
src,
time_emb=time_emb,
attn_mask=attn_mask,
src_key_padding_mask=src_key_padding_mask,
)
src = self.upsample(src)
# remove any extra frames that are not a multiple of downsample_factor
src = src[: src_orig.shape[0]]
return self.out_combiner(src_orig, src)
class SimpleDownsample(torch.nn.Module):
"""
Does downsampling with attention, by weighted sum.
"""
def __init__(self, downsample: int):
super(SimpleDownsample, self).__init__()
self.bias = nn.Parameter(torch.zeros(downsample))
self.name = None # will be set from training code
self.downsample = downsample
def forward(self, src: Tensor) -> Tensor:
"""
x: (seq_len, batch_size, in_channels)
Returns a tensor of shape
( (seq_len+downsample-1)//downsample, batch_size, channels)
"""
(seq_len, batch_size, in_channels) = src.shape
ds = self.downsample
d_seq_len = (seq_len + ds - 1) // ds
# Pad to an exact multiple of self.downsample
# right-pad src, repeating the last element.
pad = d_seq_len * ds - seq_len
src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2])
src = torch.cat((src, src_extra), dim=0)
assert src.shape[0] == d_seq_len * ds
src = src.reshape(d_seq_len, ds, batch_size, in_channels)
weights = self.bias.softmax(dim=0)
# weights: (downsample, 1, 1)
weights = weights.unsqueeze(-1).unsqueeze(-1)
# ans1 is the first `in_channels` channels of the output
ans = (src * weights).sum(dim=1)
return ans
class SimpleUpsample(torch.nn.Module):
"""
A very simple form of upsampling that just repeats the input.
"""
def __init__(self, upsample: int):
super(SimpleUpsample, self).__init__()
self.upsample = upsample
def forward(self, src: Tensor) -> Tensor:
"""
x: (seq_len, batch_size, num_channels)
Returns a tensor of shape
( (seq_len*upsample), batch_size, num_channels)
"""
upsample = self.upsample
(seq_len, batch_size, num_channels) = src.shape
src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels)
src = src.reshape(seq_len * upsample, batch_size, num_channels)
return src
class CompactRelPositionalEncoding(torch.nn.Module):
"""
Relative positional encoding module. This version is "compact" meaning it is able
to encode the important information about the relative position in a relatively
small number of dimensions. The goal is to make it so that small differences between
large relative offsets (e.g. 1000 vs. 1001) make very little difference to the
embedding. Such differences were potentially important when encoding absolute
position, but not important when encoding relative position because there is now no
need to compare two large offsets with each other.
Our embedding works by projecting the interval [-infinity,infinity] to a finite
interval using the atan() function, before doing the Fourier transform of that fixed
interval. The atan() function would compress the "long tails" too small, making it
hard to distinguish between different magnitudes of large offsets, so we use a
logarithmic function to compress large offsets to a smaller range before applying
atan(). Scalings are chosen in such a way that the embedding can clearly distinguish
individual offsets as long as they are quite close to the origin, e.g. abs(offset)
<= about sqrt(embedding_dim)
Args:
embed_dim: Embedding dimension.
dropout_rate: Dropout rate.
max_len: Maximum input length: just a heuristic for initialization.
length_factor: a heuristic scale (should be >= 1.0) which, if larger, gives
less weight to small differences of offset near the origin.
"""
def __init__(
self,
embed_dim: int,
dropout_rate: FloatLike,
max_len: int = 1000,
length_factor: float = 1.0,
) -> None:
"""Construct a CompactRelPositionalEncoding object."""
super(CompactRelPositionalEncoding, self).__init__()
self.embed_dim = embed_dim
assert embed_dim % 2 == 0, embed_dim
self.dropout = Dropout2(dropout_rate)
self.pe = None
assert length_factor >= 1.0, length_factor
self.length_factor = length_factor
self.extend_pe(torch.tensor(0.0).expand(max_len))
def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None:
"""Reset the positional encodings."""
T = x.size(0) + left_context_len
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(0) >= T * 2 - 1:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# if T == 4, x would contain [ -3, -2, 1, 0, 1, 2, 3 ]
x = torch.arange(-(T - 1), T, device=x.device).to(torch.float32).unsqueeze(1)
freqs = 1 + torch.arange(self.embed_dim // 2, device=x.device)
# `compression_length` this is arbitrary/heuristic, if it is larger we have more
# resolution for small time offsets but less resolution for large time offsets.
compression_length = self.embed_dim**0.5
# x_compressed, like X, goes from -infinity to infinity as T goes from -infinity
# to infinity; but it does so more slowly than T for large absolute values of T.
# The formula is chosen so that d(x_compressed )/dx is 1 around x == 0, which is
# important.
x_compressed = (
compression_length
* x.sign()
* ((x.abs() + compression_length).log() - math.log(compression_length))
)
# if self.length_factor == 1.0, then length_scale is chosen so that the
# FFT can exactly separate points close to the origin (T == 0). So this
# part of the formulation is not really heuristic.
# But empirically, for ASR at least, length_factor > 1.0 seems to work better.
length_scale = self.length_factor * self.embed_dim / (2.0 * math.pi)
# note for machine implementations: if atan is not available, we can use:
# x.sign() * ((1 / (x.abs() + 1)) - 1) * (-math.pi/2)
# check on wolframalpha.com: plot(sign(x) * (1 / ( abs(x) + 1) - 1 ) * -pi/2 ,
# atan(x))
x_atan = (x_compressed / length_scale).atan() # results between -pi and pi
cosines = (x_atan * freqs).cos()
sines = (x_atan * freqs).sin()
pe = torch.zeros(x.shape[0], self.embed_dim, device=x.device)
pe[:, 0::2] = cosines
pe[:, 1::2] = sines
pe[:, -1] = 1.0 # for bias.
self.pe = pe.to(dtype=x.dtype)
def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor:
"""Create positional encoding.
Args:
x (Tensor): Input tensor (time, batch, `*`).
left_context_len: (int): Length of cached left context.
Returns:
positional embedding, of shape (batch, left_context_len + 2*time-1, `*`).
"""
self.extend_pe(x, left_context_len)
x_size_left = x.size(0) + left_context_len
# length of positive side: x.size(0) + left_context_len
# length of negative side: x.size(0)
pos_emb = self.pe[
self.pe.size(0) // 2
- x_size_left
+ 1 : self.pe.size(0) // 2 # noqa E203
+ x.size(0),
:,
]
pos_emb = pos_emb.unsqueeze(0)
return self.dropout(pos_emb)
class RelPositionMultiheadAttentionWeights(nn.Module):
r"""Module that computes multi-head attention weights with relative position
encoding. Various other modules consume the resulting attention weights:
see, for example, the SimpleAttention module which allows you to compute
conventional attention.
This is a quite heavily modified from: "Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context",
we have to write up the differences.
Args:
embed_dim: number of channels at the input to this module, e.g. 256
pos_dim: dimension of the positional encoding vectors, e.g. 128.
num_heads: number of heads to compute weights for, e.g. 8
query_head_dim: dimension of the query (and key), per head. e.g. 24.
pos_head_dim: dimension of the projected positional encoding per head, e.g. 4.
dropout: dropout probability for attn_output_weights. Default: 0.0.
pos_emb_skip_rate: probability for skipping the pos_emb part of the scores on
any given call to forward(), in training time.
"""
def __init__(
self,
embed_dim: int,
pos_dim: int,
num_heads: int,
query_head_dim: int,
pos_head_dim: int,
dropout: float = 0.0,
pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)),
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.query_head_dim = query_head_dim
self.pos_head_dim = pos_head_dim
self.dropout = dropout
self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate)
self.name = None # will be overwritten in training code; for diagnostics.
key_head_dim = query_head_dim
in_proj_dim = (query_head_dim + key_head_dim + pos_head_dim) * num_heads
# the initial_scale is supposed to take over the "scaling" factor of
# head_dim ** -0.5 that has been used in previous forms of attention,
# dividing it between the query and key. Note: this module is intended
# to be used with the ScaledAdam optimizer; with most other optimizers,
# it would be necessary to apply the scaling factor in the forward function.
self.in_proj = ScaledLinear(
embed_dim,
in_proj_dim,
bias=True,
initial_scale=query_head_dim**-0.25,
)
self.whiten_keys = Whiten(
num_groups=num_heads,
whitening_limit=_whitening_schedule(3.0),
prob=(0.025, 0.25),
grad_scale=0.025,
)
# add a balancer for the keys that runs with very small probability, and
# tries to enforce that all dimensions have mean around zero. The
# weights produced by this module are invariant to adding a constant to
# the keys, so the derivative of the bias is mathematically zero; but
# due to how Adam/ScaledAdam work, it can learn a fairly large nonzero
# bias because the small numerical roundoff tends to have a non-random
# sign. This module is intended to prevent that. Use a very small
# probability; that should be sufficient to fix the problem.
self.balance_keys = Balancer(
key_head_dim * num_heads,
channel_dim=-1,
min_positive=0.4,
max_positive=0.6,
min_abs=0.0,
max_abs=100.0,
prob=0.025,
)
# linear transformation for positional encoding.
self.linear_pos = ScaledLinear(
pos_dim, num_heads * pos_head_dim, bias=False, initial_scale=0.05
)
# the following are for diagnostics only, see --print-diagnostics option
self.copy_pos_query = Identity()
self.copy_query = Identity()
def forward(
self,
x: Tensor,
pos_emb: Tensor,
key_padding_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
) -> Tensor:
r"""
Args:
x: input of shape (seq_len, batch_size, embed_dim)
pos_emb: Positional embedding tensor, of shape (1, 2*seq_len - 1, pos_dim)
key_padding_mask: a bool tensor of shape (batch_size, seq_len).
Positions that are True in this mask will be ignored as sources in the
attention weighting.
attn_mask: mask of shape (seq_len, seq_len) or
(batch_size, seq_len, seq_len), interpreted as
([batch_size,] tgt_seq_len, src_seq_len)
saying which positions are allowed to attend to which other positions.
Returns:
a tensor of attention weights, of
shape (hum_heads, batch_size, seq_len, seq_len)
interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len).
"""
x = self.in_proj(x)
query_head_dim = self.query_head_dim
pos_head_dim = self.pos_head_dim
num_heads = self.num_heads
seq_len, batch_size, _ = x.shape
query_dim = query_head_dim * num_heads
# self-attention
q = x[..., 0:query_dim]
k = x[..., query_dim : 2 * query_dim]
# p is the position-encoding query
p = x[..., 2 * query_dim :]
assert p.shape[-1] == num_heads * pos_head_dim, (
p.shape[-1],
num_heads,
pos_head_dim,
)
q = self.copy_query(q) # for diagnostics only, does nothing.
k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass.
p = self.copy_pos_query(p) # for diagnostics only, does nothing.
q = q.reshape(seq_len, batch_size, num_heads, query_head_dim)
p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim)
k = k.reshape(seq_len, batch_size, num_heads, query_head_dim)
# time1 refers to target, time2 refers to source.
q = q.permute(2, 1, 0, 3) # (head, batch, time1, query_head_dim)
p = p.permute(2, 1, 0, 3) # (head, batch, time1, pos_head_dim)
k = k.permute(2, 1, 3, 0) # (head, batch, d_k, time2)
attn_scores = torch.matmul(q, k)
use_pos_scores = False
if torch.jit.is_scripting() or torch.jit.is_tracing():
# We can't put random.random() in the same line
use_pos_scores = True
elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
use_pos_scores = True
if use_pos_scores:
pos_emb = self.linear_pos(pos_emb)
seq_len2 = 2 * seq_len - 1
pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
2, 0, 3, 1
)
# pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)
# (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head,
# batch, time1, seq_len2) [where seq_len2 represents relative position.]
pos_scores = torch.matmul(p, pos_emb)
# the following .as_strided() expression converts the last axis of
# pos_scores from relative to absolute position. I don't know whether I
# might have got the time-offsets backwards or not, but let this code define
# which way round it is supposed to be.
if torch.jit.is_tracing():
(num_heads, batch_size, time1, n) = pos_scores.shape
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
cols = torch.arange(seq_len)
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
indexes = rows + cols
pos_scores = pos_scores.reshape(-1, n)
pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
pos_scores = pos_scores.reshape(num_heads, batch_size, time1, seq_len)
else:
pos_scores = pos_scores.as_strided(
(num_heads, batch_size, seq_len, seq_len),
(
pos_scores.stride(0),
pos_scores.stride(1),
pos_scores.stride(2) - pos_scores.stride(3),
pos_scores.stride(3),
),
storage_offset=pos_scores.stride(3) * (seq_len - 1),
)
attn_scores = attn_scores + pos_scores
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif self.training and random.random() < 0.1:
# This is a harder way of limiting the attention scores to not be
# too large. It incurs a penalty if any of them has an absolute
# value greater than 50.0. this should be outside the normal range
# of the attention scores. We use this mechanism instead of, say,
# something added to the loss function involving the entropy,
# because once the entropy gets very small gradients through the
# softmax can become very small, and we'd get zero derivatives. The
# choices of 1.0e-04 as the scale on the penalty makes this
# mechanism vulnerable to the absolute scale of the loss function,
# but we view this as a failsafe to avoid "implausible" parameter
# values rather than a regularization method that should be active
# under normal circumstances.
attn_scores = penalize_abs_values_gt(
attn_scores, limit=25.0, penalty=1.0e-04, name=self.name
)
assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len)
if attn_mask is not None:
assert attn_mask.dtype == torch.bool
# use -1000 to avoid nan's where attn_mask and key_padding_mask make
# all scores zero. It's important that this be large enough that exp(-1000)
# is exactly zero, for reasons related to const_attention_rate, it
# compares the final weights with zero.
attn_scores = attn_scores.masked_fill(attn_mask, -1000)
if key_padding_mask is not None:
assert key_padding_mask.shape == (
batch_size,
seq_len,
), key_padding_mask.shape
attn_scores = attn_scores.masked_fill(
key_padding_mask.unsqueeze(1),
-1000,
)
# We use our own version of softmax, defined in scaling.py, which should
# save a little of the memory used in backprop by, if we are in
# automatic mixed precision mode (amp / autocast), by only storing the
# half-precision output for backprop purposes.
attn_weights = softmax(attn_scores, dim=-1)
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif random.random() < 0.001 and not self.training:
self._print_attn_entropy(attn_weights)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
return attn_weights
def _print_attn_entropy(self, attn_weights: Tensor):
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
(num_heads, batch_size, seq_len, seq_len) = attn_weights.shape
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=False):
attn_weights = attn_weights.to(torch.float32)
attn_weights_entropy = (
-((attn_weights + 1.0e-20).log() * attn_weights)
.sum(dim=-1)
.mean(dim=(1, 2))
)
logging.debug(
f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}"
)
class SelfAttention(nn.Module):
"""
The simplest possible attention module. This one works with already-computed
attention weights, e.g. as computed by RelPositionMultiheadAttentionWeights.
Args:
embed_dim: the input and output embedding dimension
num_heads: the number of attention heads
value_head_dim: the value dimension per head
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
value_head_dim: int,
) -> None:
super().__init__()
self.in_proj = nn.Linear(embed_dim, num_heads * value_head_dim, bias=True)
self.out_proj = ScaledLinear(
num_heads * value_head_dim,
embed_dim,
bias=True,
initial_scale=0.05,
)
self.whiten = Whiten(
num_groups=1,
whitening_limit=_whitening_schedule(7.5, ratio=3.0),
prob=(0.025, 0.25),
grad_scale=0.01,
)
def forward(
self,
x: Tensor,
attn_weights: Tensor,
) -> Tensor:
"""
Args:
x: input tensor, of shape (seq_len, batch_size, embed_dim)
attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len),
with seq_len being interpreted as (tgt_seq_len, src_seq_len). Expect
attn_weights.sum(dim=-1) == 1.
Returns:
a tensor with the same shape as x.
"""
(seq_len, batch_size, embed_dim) = x.shape
num_heads = attn_weights.shape[0]
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len)
x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim)
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
# now x: (num_heads, batch_size, seq_len, value_head_dim)
value_head_dim = x.shape[-1]
# todo: see whether there is benefit in overriding matmul
x = torch.matmul(attn_weights, x)
# v: (num_heads, batch_size, seq_len, value_head_dim)
x = (
x.permute(2, 1, 0, 3)
.contiguous()
.view(seq_len, batch_size, num_heads * value_head_dim)
)
# returned value is of shape (seq_len, batch_size, embed_dim), like the input.
x = self.out_proj(x)
x = self.whiten(x)
return x
class FeedforwardModule(nn.Module):
"""Feedforward module in TTSZipformer model."""
def __init__(self, embed_dim: int, feedforward_dim: int, dropout: FloatLike):
super(FeedforwardModule, self).__init__()
self.in_proj = nn.Linear(embed_dim, feedforward_dim)
self.hidden_balancer = Balancer(
feedforward_dim,
channel_dim=-1,
min_positive=0.3,
max_positive=1.0,
min_abs=0.75,
max_abs=5.0,
)
# shared_dim=0 means we share the dropout mask along the time axis
self.out_proj = ActivationDropoutAndLinear(
feedforward_dim,
embed_dim,
activation="SwooshL",
dropout_p=dropout,
dropout_shared_dim=0,
bias=True,
initial_scale=0.1,
)
self.out_whiten = Whiten(
num_groups=1,
whitening_limit=_whitening_schedule(7.5),
prob=(0.025, 0.25),
grad_scale=0.01,
)
def forward(self, x: Tensor):
x = self.in_proj(x)
x = self.hidden_balancer(x)
# out_proj contains SwooshL activation, then dropout, then linear.
x = self.out_proj(x)
x = self.out_whiten(x)
return x
class NonlinAttention(nn.Module):
"""This is like the ConvolutionModule, but refactored so that we use multiplication
by attention weights (borrowed from the attention module) in place of actual
convolution. We also took out the second nonlinearity, the one after the
attention mechanism.
Args:
channels (int): The number of channels of conv layers.
"""
def __init__(
self,
channels: int,
hidden_channels: int,
) -> None:
super().__init__()
self.hidden_channels = hidden_channels
self.in_proj = nn.Linear(channels, hidden_channels * 3, bias=True)
# balancer that goes before the sigmoid. Have quite a large min_abs value, at
# 2.0, because we noticed that well-trained instances of this module have
# abs-value before the sigmoid starting from about 3, and poorly-trained
# instances of the module have smaller abs values before the sigmoid.
self.balancer = Balancer(
hidden_channels,
channel_dim=-1,
min_positive=ScheduledFloat((0.0, 0.25), (20000.0, 0.05)),
max_positive=ScheduledFloat((0.0, 0.75), (20000.0, 0.95)),
min_abs=0.5,
max_abs=5.0,
)
self.tanh = nn.Tanh()
self.identity1 = Identity() # for diagnostics.
self.identity2 = Identity() # for diagnostics.
self.identity3 = Identity() # for diagnostics.
self.out_proj = ScaledLinear(
hidden_channels, channels, bias=True, initial_scale=0.05
)
self.whiten1 = Whiten(
num_groups=1,
whitening_limit=_whitening_schedule(5.0),
prob=(0.025, 0.25),
grad_scale=0.01,
)
self.whiten2 = Whiten(
num_groups=1,
whitening_limit=_whitening_schedule(5.0, ratio=3.0),
prob=(0.025, 0.25),
grad_scale=0.01,
)
def forward(
self,
x: Tensor,
attn_weights: Tensor,
) -> Tensor:
""".
Args:
x: a Tensor of shape (seq_len, batch_size, num_channels)
attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
Returns:
a Tensor with the same shape as x
"""
x = self.in_proj(x)
(seq_len, batch_size, _) = x.shape
hidden_channels = self.hidden_channels
s, x, y = x.chunk(3, dim=2)
# s will go through tanh.
s = self.balancer(s)
s = self.tanh(s)
s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels)
x = self.whiten1(x)
x = x * s
x = self.identity1(x) # diagnostics only, it's the identity.
(seq_len, batch_size, embed_dim) = x.shape
num_heads = attn_weights.shape[0]
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len)
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
# now x: (num_heads, batch_size, seq_len, head_dim)
x = torch.matmul(attn_weights, x)
# now x: (num_heads, batch_size, seq_len, head_dim)
x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1)
y = self.identity2(y)
x = x * y
x = self.identity3(x)
x = self.out_proj(x)
x = self.whiten2(x)
return x
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Zipformer2 model.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
bias (bool): Whether to use bias in conv layers (default=True).
"""
def __init__(
self,
channels: int,
kernel_size: int,
) -> None:
"""Construct a ConvolutionModule object."""
super(ConvolutionModule, self).__init__()
# kernerl_size should be a odd number for 'SAME' padding
assert (kernel_size - 1) % 2 == 0
bottleneck_dim = channels
self.in_proj = nn.Linear(
channels,
2 * bottleneck_dim,
)
# the gradients on in_proj are a little noisy, likely to do with the
# sigmoid in glu.
# after in_proj we put x through a gated linear unit (nn.functional.glu). For
# most layers the normal rms value of channels of x seems to be in the range 1
# to 4, but sometimes, for some reason, for layer 0 the rms ends up being very
# large, between 50 and 100 for different channels. This will cause very peaky
# and sparse derivatives for the sigmoid gating function, which will tend to
# make the loss function not learn effectively. (for most layers the average
# absolute values are in the range 0.5..9.0, and the average p(x>0), i.e.
# positive proportion, at the output of pointwise_conv1.output is around 0.35 to
# 0.45 for different layers, which likely breaks down as 0.5 for the "linear"
# half and 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that
# if we constrain the rms values to a reasonable range via a constraint of
# max_abs=10.0, it will be in a better position to start learning something,
# i.e. to latch onto the correct range.
self.balancer1 = Balancer(
bottleneck_dim,
channel_dim=-1,
min_positive=ScheduledFloat((0.0, 0.05), (8000.0, 0.025)),
max_positive=1.0,
min_abs=1.5,
max_abs=ScheduledFloat((0.0, 5.0), (8000.0, 10.0), default=1.0),
)
self.activation1 = Identity() # for diagnostics
self.sigmoid = nn.Sigmoid()
self.activation2 = Identity() # for diagnostics
assert kernel_size % 2 == 1
self.depthwise_conv = nn.Conv1d(
in_channels=bottleneck_dim,
out_channels=bottleneck_dim,
groups=bottleneck_dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
)
self.balancer2 = Balancer(
bottleneck_dim,
channel_dim=1,
min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)),
max_positive=1.0,
min_abs=ScheduledFloat((0.0, 0.2), (20000.0, 0.5)),
max_abs=10.0,
)
self.whiten = Whiten(
num_groups=1,
whitening_limit=_whitening_schedule(7.5),
prob=(0.025, 0.25),
grad_scale=0.01,
)
self.out_proj = ActivationDropoutAndLinear(
bottleneck_dim,
channels,
activation="SwooshR",
dropout_p=0.0,
initial_scale=0.05,
)
def forward(
self,
x: Tensor,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
"""Compute convolution module.
Args:
x: Input tensor (#time, batch, channels).
src_key_padding_mask: the mask for the src keys per batch (optional):
(batch, #time), contains True in masked positions.
Returns:
Tensor: Output tensor (#time, batch, channels).
"""
x = self.in_proj(x) # (time, batch, 2*channels)
x, s = x.chunk(2, dim=2)
s = self.balancer1(s)
s = self.sigmoid(s)
x = self.activation1(x) # identity.
x = x * s
x = self.activation2(x) # identity
# (time, batch, channels)
# exchange the temporal dimension and the feature dimension
x = x.permute(1, 2, 0) # (#batch, channels, time).
if src_key_padding_mask is not None:
x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
x = self.depthwise_conv(x)
x = self.balancer2(x)
x = x.permute(2, 0, 1) # (time, batch, channels)
x = self.whiten(x) # (time, batch, channels)
x = self.out_proj(x) # (time, batch, channels)
return x
|