File size: 63,017 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
#!/usr/bin/env python3
# Copyright    2022-2024  Xiaomi Corp.        (authors: Daniel Povey,
#                                                       Zengwei Yao,
#                                                       Wei Kang
#                                                       Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
import math
import random
from typing import Optional, Tuple, Union

import torch
from torch import Tensor, nn

from zipvoice.models.modules.scaling import (
    ActivationDropoutAndLinear,
    Balancer,
    BiasNorm,
    Dropout2,
    FloatLike,
    Identity,
    ScaledLinear,
    ScheduledFloat,
    SwooshR,
    Whiten,
    limit_param_value,
    penalize_abs_values_gt,
    softmax,
)


def timestep_embedding(timesteps, dim, max_period=10000):
    """Create sinusoidal timestep embeddings.

    :param timesteps: shape of (N) or (N, T)
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an Tensor of positional embeddings. shape of (N, dim) or (T, N, dim)
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period)
        * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device)
        / half
    )

    if timesteps.dim() == 2:
        timesteps = timesteps.transpose(0, 1)  # (N, T) -> (T, N)

    args = timesteps[..., None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[..., :1])], dim=-1)
    return embedding


class TTSZipformer(nn.Module):
    """
    Args:

    Note: all "int or Tuple[int]" arguments below will be treated as lists of the same
    length as downsampling_factor if they are single ints or one-element tuples.
    The length of downsampling_factor defines the number of stacks.

        downsampling_factor (Tuple[int]): downsampling factor for each encoder stack.
           Note: this is in addition to the downsampling factor of 2 that is applied in
           the frontend (self.encoder_embed).
        encoder_dim (Tuple[int]): embedding dimension of each of the encoder stacks,
            one per encoder stack.
        num_encoder_layers (int or Tuple[int])): number of encoder layers for each stack
        query_head_dim (int or Tuple[int]): dimension of query and key per attention
           head: per stack, if a tuple..
        pos_head_dim (int or Tuple[int]): dimension of positional-encoding projection
            per attention head
        value_head_dim (int or Tuple[int]): dimension of value in each attention head
        num_heads: (int or Tuple[int]): number of heads in the self-attention mechanism.
              Must be at least 4.
        feedforward_dim (int or Tuple[int]): hidden dimension in feedforward modules
        cnn_module_kernel (int or Tuple[int])): Kernel size of convolution module

        pos_dim (int): the dimension of each positional-encoding vector prior to
            projection, e.g. 128.

        dropout (float): dropout rate
        warmup_batches (float): number of batches to warm up over; this controls
          dropout of encoder layers.
        use_time_embed: (bool): if True, take time embedding as an additional input.
        time_embed_dim: (int): the dimension of the time embedding.
        use_guidance_scale_embed (bool): if True, take guidance scale embedding as
            an additional input.
        guidance_scale_embed_dim: (int): the dimension of the guidance scale embedding.
    """

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        downsampling_factor: Union[int, Tuple[int]] = (2, 4),
        num_encoder_layers: Union[int, Tuple[int]] = 4,
        cnn_module_kernel: Union[int, Tuple[int]] = 31,
        encoder_dim: int = 384,
        query_head_dim: int = 24,
        pos_head_dim: int = 4,
        value_head_dim: int = 12,
        num_heads: int = 8,
        feedforward_dim: int = 1536,
        pos_dim: int = 192,
        dropout: FloatLike = None,  # see code below for default
        warmup_batches: float = 4000.0,
        use_time_embed: bool = True,
        time_embed_dim: int = 192,
        use_guidance_scale_embed: bool = False,
        guidance_scale_embed_dim: int = 192,
        use_conv: bool = True,
    ) -> None:
        super(TTSZipformer, self).__init__()

        if dropout is None:
            dropout = ScheduledFloat((0.0, 0.3), (20000.0, 0.1))
        if isinstance(downsampling_factor, int):
            downsampling_factor = (downsampling_factor,)

        def _to_tuple(x):
            """Converts a single int or a 1-tuple of an int to a tuple with the same
            length as downsampling_factor"""
            if isinstance(x, int):
                x = (x,)
            if len(x) == 1:
                x = x * len(downsampling_factor)
            else:
                assert len(x) == len(downsampling_factor) and isinstance(x[0], int)
            return x

        def _assert_downsampling_factor(factors):
            """assert downsampling_factor follows u-net style"""
            assert factors[0] == 1 and factors[-1] == 1

            for i in range(1, len(factors) // 2 + 1):
                assert factors[i] == factors[i - 1] * 2

            for i in range(len(factors) // 2 + 1, len(factors)):
                assert factors[i] * 2 == factors[i - 1]

        _assert_downsampling_factor(downsampling_factor)
        self.downsampling_factor = downsampling_factor  # tuple
        num_encoder_layers = _to_tuple(num_encoder_layers)
        self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel)
        self.encoder_dim = encoder_dim
        self.num_encoder_layers = num_encoder_layers
        self.query_head_dim = query_head_dim
        self.value_head_dim = value_head_dim
        self.num_heads = num_heads

        self.use_time_embed = use_time_embed
        self.use_guidance_scale_embed = use_guidance_scale_embed

        self.time_embed_dim = time_embed_dim
        if self.use_time_embed:
            assert time_embed_dim != -1
        else:
            time_embed_dim = -1
        self.guidance_scale_embed_dim = guidance_scale_embed_dim

        self.in_proj = nn.Linear(in_dim, encoder_dim)
        self.out_proj = nn.Linear(encoder_dim, out_dim)

        # each one will be Zipformer2Encoder or DownsampledZipformer2Encoder
        encoders = []

        num_encoders = len(downsampling_factor)
        for i in range(num_encoders):
            encoder_layer = Zipformer2EncoderLayer(
                embed_dim=encoder_dim,
                pos_dim=pos_dim,
                num_heads=num_heads,
                query_head_dim=query_head_dim,
                pos_head_dim=pos_head_dim,
                value_head_dim=value_head_dim,
                feedforward_dim=feedforward_dim,
                use_conv=use_conv,
                cnn_module_kernel=cnn_module_kernel[i],
                dropout=dropout,
            )

            # For the segment of the warmup period, we let the Conv2dSubsampling
            # layer learn something.  Then we start to warm up the other encoders.
            encoder = Zipformer2Encoder(
                encoder_layer,
                num_encoder_layers[i],
                embed_dim=encoder_dim,
                time_embed_dim=time_embed_dim,
                pos_dim=pos_dim,
                warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1),
                warmup_end=warmup_batches * (i + 2) / (num_encoders + 1),
                final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5),
            )

            if downsampling_factor[i] != 1:
                encoder = DownsampledZipformer2Encoder(
                    encoder,
                    dim=encoder_dim,
                    downsample=downsampling_factor[i],
                )

            encoders.append(encoder)

        self.encoders = nn.ModuleList(encoders)
        if self.use_time_embed:
            self.time_embed = nn.Sequential(
                nn.Linear(time_embed_dim, time_embed_dim * 2),
                SwooshR(),
                nn.Linear(time_embed_dim * 2, time_embed_dim),
            )
        else:
            self.time_embed = None

        if self.use_guidance_scale_embed:
            self.guidance_scale_embed = ScaledLinear(
                guidance_scale_embed_dim,
                time_embed_dim,
                bias=False,
                initial_scale=0.1,
            )
        else:
            self.guidance_scale_embed = None

    def forward(
        self,
        x: Tensor,
        t: Optional[Tensor] = None,
        padding_mask: Optional[Tensor] = None,
        guidance_scale: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Tensor]:
        """
        Args:
          x:
            The input tensor. Its shape is (batch_size, seq_len, feature_dim).
          t:
            A t tensor of shape (batch_size,) or (batch_size, seq_len)
          padding_mask:
            The mask for padding, of shape (batch_size, seq_len); True means
            masked position. May be None.
          guidance_scale:
            The guidance scale in classifier-free guidance of distillation model.
        Returns:
          Return the output embeddings. its shape is
            (batch_size, output_seq_len, encoder_dim)
        """
        x = x.permute(1, 0, 2)
        x = self.in_proj(x)

        if t is not None:
            assert t.dim() == 1 or t.dim() == 2, t.shape
            time_emb = timestep_embedding(t, self.time_embed_dim)
            if guidance_scale is not None:
                assert (
                    guidance_scale.dim() == 1 or guidance_scale.dim() == 2
                ), guidance_scale.shape
                guidance_scale_emb = self.guidance_scale_embed(
                    timestep_embedding(guidance_scale, self.guidance_scale_embed_dim)
                )
                time_emb = time_emb + guidance_scale_emb
            time_emb = self.time_embed(time_emb)
        else:
            time_emb = None

        attn_mask = None

        for i, module in enumerate(self.encoders):
            x = module(
                x,
                time_emb=time_emb,
                src_key_padding_mask=padding_mask,
                attn_mask=attn_mask,
            )
        x = self.out_proj(x)
        x = x.permute(1, 0, 2)
        return x


def _whitening_schedule(x: float, ratio: float = 2.0) -> ScheduledFloat:
    return ScheduledFloat((0.0, x), (20000.0, ratio * x), default=x)


class Zipformer2EncoderLayer(nn.Module):
    """
    Args:
        embed_dim: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        feedforward_dim: the dimension of the feedforward network model (required).
        dropout: the dropout value (default=0.1).
        cnn_module_kernel (int): Kernel size of convolution module (default=31).

    Examples::
        >>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8)
        >>> src = torch.rand(10, 32, 512)
        >>> pos_emb = torch.rand(32, 19, 512)
        >>> out = encoder_layer(src, pos_emb)
    """

    def __init__(
        self,
        embed_dim: int,
        pos_dim: int,
        num_heads: int,
        query_head_dim: int,
        pos_head_dim: int,
        value_head_dim: int,
        feedforward_dim: int,
        dropout: FloatLike = 0.1,
        cnn_module_kernel: int = 31,
        use_conv: bool = True,
        attention_skip_rate: FloatLike = ScheduledFloat(
            (0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0
        ),
        conv_skip_rate: FloatLike = ScheduledFloat(
            (0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0
        ),
        const_attention_rate: FloatLike = ScheduledFloat(
            (0.0, 0.25), (4000.0, 0.025), default=0
        ),
        ff2_skip_rate: FloatLike = ScheduledFloat(
            (0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0)
        ),
        ff3_skip_rate: FloatLike = ScheduledFloat(
            (0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0)
        ),
        bypass_skip_rate: FloatLike = ScheduledFloat(
            (0.0, 0.5), (4000.0, 0.02), default=0
        ),
    ) -> None:
        super(Zipformer2EncoderLayer, self).__init__()
        self.embed_dim = embed_dim

        # self.bypass implements layer skipping as well as bypass.
        self.bypass = BypassModule(
            embed_dim, skip_rate=bypass_skip_rate, straight_through_rate=0
        )
        # bypass_mid is bypass used in the middle of the layer.
        self.bypass_mid = BypassModule(embed_dim, straight_through_rate=0)

        # skip probability for dynamic modules (meaning: anything but feedforward).
        self.attention_skip_rate = copy.deepcopy(attention_skip_rate)
        # an additional skip probability that applies to ConvModule to stop it from
        # contributing too much early on.
        self.conv_skip_rate = copy.deepcopy(conv_skip_rate)

        # ff2_skip_rate is to prevent the ff2 module from having output that's too big
        # compared to its residual.
        self.ff2_skip_rate = copy.deepcopy(ff2_skip_rate)
        self.ff3_skip_rate = copy.deepcopy(ff3_skip_rate)

        self.const_attention_rate = copy.deepcopy(const_attention_rate)

        self.self_attn_weights = RelPositionMultiheadAttentionWeights(
            embed_dim,
            pos_dim=pos_dim,
            num_heads=num_heads,
            query_head_dim=query_head_dim,
            pos_head_dim=pos_head_dim,
            dropout=0.0,
        )

        self.self_attn1 = SelfAttention(embed_dim, num_heads, value_head_dim)

        self.self_attn2 = SelfAttention(embed_dim, num_heads, value_head_dim)

        self.feed_forward1 = FeedforwardModule(
            embed_dim, (feedforward_dim * 3) // 4, dropout
        )

        self.feed_forward2 = FeedforwardModule(embed_dim, feedforward_dim, dropout)

        self.feed_forward3 = FeedforwardModule(
            embed_dim, (feedforward_dim * 5) // 4, dropout
        )

        self.nonlin_attention = NonlinAttention(
            embed_dim, hidden_channels=3 * embed_dim // 4
        )

        self.use_conv = use_conv

        if self.use_conv:
            self.conv_module1 = ConvolutionModule(embed_dim, cnn_module_kernel)

            self.conv_module2 = ConvolutionModule(embed_dim, cnn_module_kernel)

        self.norm = BiasNorm(embed_dim)

        self.balancer1 = Balancer(
            embed_dim,
            channel_dim=-1,
            min_positive=0.45,
            max_positive=0.55,
            min_abs=0.2,
            max_abs=4.0,
        )

        # balancer for output of NonlinAttentionModule
        self.balancer_na = Balancer(
            embed_dim,
            channel_dim=-1,
            min_positive=0.3,
            max_positive=0.7,
            min_abs=ScheduledFloat((0.0, 0.004), (4000.0, 0.02)),
            prob=0.05,  # out of concern for memory usage
        )

        # balancer for output of feedforward2, prevent it from staying too
        # small.  give this a very small probability, even at the start of
        # training, it's to fix a rare problem and it's OK to fix it slowly.
        self.balancer_ff2 = Balancer(
            embed_dim,
            channel_dim=-1,
            min_positive=0.3,
            max_positive=0.7,
            min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.1), default=0.0),
            max_abs=2.0,
            prob=0.05,
        )

        self.balancer_ff3 = Balancer(
            embed_dim,
            channel_dim=-1,
            min_positive=0.3,
            max_positive=0.7,
            min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.2), default=0.0),
            max_abs=4.0,
            prob=0.05,
        )

        self.whiten = Whiten(
            num_groups=1,
            whitening_limit=_whitening_schedule(4.0, ratio=3.0),
            prob=(0.025, 0.25),
            grad_scale=0.01,
        )

        self.balancer2 = Balancer(
            embed_dim,
            channel_dim=-1,
            min_positive=0.45,
            max_positive=0.55,
            min_abs=0.1,
            max_abs=4.0,
        )

    def get_sequence_dropout_mask(
        self, x: Tensor, dropout_rate: float
    ) -> Optional[Tensor]:
        if (
            dropout_rate == 0.0
            or not self.training
            or torch.jit.is_scripting()
            or torch.jit.is_tracing()
        ):
            return None
        batch_size = x.shape[1]
        mask = (torch.rand(batch_size, 1, device=x.device) > dropout_rate).to(x.dtype)
        return mask

    def sequence_dropout(self, x: Tensor, dropout_rate: float) -> Tensor:
        """
        Apply sequence-level dropout to x.
        x shape: (seq_len, batch_size, embed_dim)
        """
        dropout_mask = self.get_sequence_dropout_mask(x, dropout_rate)
        if dropout_mask is None:
            return x
        else:
            return x * dropout_mask

    def forward(
        self,
        src: Tensor,
        pos_emb: Tensor,
        time_emb: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
        src_key_padding_mask: Optional[Tensor] = None,
    ) -> Tensor:
        """
        Pass the input through the encoder layer.
        Args:
          src: the sequence to the encoder (required):
            shape (seq_len, batch_size, embedding_dim).
          pos_emb: (1, 2*seq_len-1, pos_emb_dim) or
            (batch_size, 2*seq_len-1, pos_emb_dim)
          time_emb: the embedding representing the current timestep
            shape (batch_size, embedding_dim) or (seq_len, batch_size, embedding_dim).
          attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len)
            or (seq_len, seq_len), interpreted as (batch_size, tgt_seq_len, src_seq_len)
            or (tgt_seq_len, src_seq_len). True means masked position. May be None.
          src_key_padding_mask:  the mask for padding, of shape (batch_size, seq_len);
            True means masked position.  May be None.

        Returns:
           A tensor which has the same shape as src
        """
        src_orig = src

        # dropout rate for non-feedforward submodules
        if torch.jit.is_scripting() or torch.jit.is_tracing():
            attention_skip_rate = 0.0
        else:
            attention_skip_rate = (
                float(self.attention_skip_rate) if self.training else 0.0
            )

        # attn_weights: (num_heads, batch_size, seq_len, seq_len)
        attn_weights = self.self_attn_weights(
            src,
            pos_emb=pos_emb,
            attn_mask=attn_mask,
            key_padding_mask=src_key_padding_mask,
        )
        if time_emb is not None:

            src = src + time_emb

        src = src + self.feed_forward1(src)

        self_attn_dropout_mask = self.get_sequence_dropout_mask(
            src, attention_skip_rate
        )

        selected_attn_weights = attn_weights[0:1]
        if torch.jit.is_scripting() or torch.jit.is_tracing():
            pass
        elif self.training and random.random() < float(self.const_attention_rate):
            # Make attention weights constant.  The intention is to
            # encourage these modules to do something similar to an
            # averaging-over-time operation.
            # only need the mask, can just use the 1st one and expand later
            selected_attn_weights = selected_attn_weights[0:1]
            selected_attn_weights = (selected_attn_weights > 0.0).to(
                selected_attn_weights.dtype
            )
            selected_attn_weights = selected_attn_weights * (
                1.0 / selected_attn_weights.sum(dim=-1, keepdim=True)
            )

        na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights))

        src = src + (
            na if self_attn_dropout_mask is None else na * self_attn_dropout_mask
        )

        self_attn = self.self_attn1(src, attn_weights)

        src = src + (
            self_attn
            if self_attn_dropout_mask is None
            else self_attn * self_attn_dropout_mask
        )

        if self.use_conv:
            if torch.jit.is_scripting() or torch.jit.is_tracing():
                conv_skip_rate = 0.0
            else:
                conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0

            if time_emb is not None:
                src = src + time_emb

            src = src + self.sequence_dropout(
                self.conv_module1(
                    src,
                    src_key_padding_mask=src_key_padding_mask,
                ),
                conv_skip_rate,
            )

        if torch.jit.is_scripting() or torch.jit.is_tracing():
            ff2_skip_rate = 0.0
        else:
            ff2_skip_rate = float(self.ff2_skip_rate) if self.training else 0.0
        src = src + self.sequence_dropout(
            self.balancer_ff2(self.feed_forward2(src)), ff2_skip_rate
        )

        # bypass in the middle of the layer.
        src = self.bypass_mid(src_orig, src)

        self_attn = self.self_attn2(src, attn_weights)

        src = src + (
            self_attn
            if self_attn_dropout_mask is None
            else self_attn * self_attn_dropout_mask
        )

        if self.use_conv:

            if torch.jit.is_scripting() or torch.jit.is_tracing():
                conv_skip_rate = 0.0
            else:
                conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0

            if time_emb is not None:
                src = src + time_emb

            src = src + self.sequence_dropout(
                self.conv_module2(
                    src,
                    src_key_padding_mask=src_key_padding_mask,
                ),
                conv_skip_rate,
            )

        if torch.jit.is_scripting() or torch.jit.is_tracing():
            ff3_skip_rate = 0.0
        else:
            ff3_skip_rate = float(self.ff3_skip_rate) if self.training else 0.0
        src = src + self.sequence_dropout(
            self.balancer_ff3(self.feed_forward3(src)), ff3_skip_rate
        )

        src = self.balancer1(src)
        src = self.norm(src)

        src = self.bypass(src_orig, src)

        src = self.balancer2(src)
        src = self.whiten(src)

        return src


class Zipformer2Encoder(nn.Module):
    r"""Zipformer2Encoder is a stack of N encoder layers

    Args:
        encoder_layer: an instance of the Zipformer2EncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        pos_dim: the dimension for the relative positional encoding

    Examples::
        >>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8)
        >>> zipformer_encoder = Zipformer2Encoder(encoder_layer, num_layers=6)
        >>> src = torch.rand(10, 32, 512)
        >>> out = zipformer_encoder(src)
    """

    def __init__(
        self,
        encoder_layer: nn.Module,
        num_layers: int,
        embed_dim: int,
        time_embed_dim: int,
        pos_dim: int,
        warmup_begin: float,
        warmup_end: float,
        initial_layerdrop_rate: float = 0.5,
        final_layerdrop_rate: float = 0.05,
    ) -> None:
        super().__init__()
        self.encoder_pos = CompactRelPositionalEncoding(
            pos_dim, dropout_rate=0.15, length_factor=1.0
        )
        if time_embed_dim != -1:
            self.time_emb = nn.Sequential(
                SwooshR(),
                nn.Linear(time_embed_dim, embed_dim),
            )
        else:
            self.time_emb = None

        self.layers = nn.ModuleList(
            [copy.deepcopy(encoder_layer) for i in range(num_layers)]
        )
        self.num_layers = num_layers

        assert 0 <= warmup_begin <= warmup_end

        delta = (1.0 / num_layers) * (warmup_end - warmup_begin)
        cur_begin = warmup_begin  # interpreted as a training batch index
        for i in range(num_layers):
            cur_end = cur_begin + delta
            self.layers[i].bypass.skip_rate = ScheduledFloat(
                (cur_begin, initial_layerdrop_rate),
                (cur_end, final_layerdrop_rate),
                default=0.0,
            )
            cur_begin = cur_end

    def forward(
        self,
        src: Tensor,
        time_emb: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
        src_key_padding_mask: Optional[Tensor] = None,
    ) -> Tensor:
        r"""Pass the input through the encoder layers in turn.

        Args:
            src: the sequence to the encoder (required):
                shape (seq_len, batch_size, embedding_dim).
            time_emb: the embedding representing the current timestep:
                shape  (batch_size, embedding_dim)
                or (seq_len, batch_size, embedding_dim) .
            attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len)
                or (seq_len, seq_len), interpreted as
                (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
                True means masked position. May be None.
            src_key_padding_mask:  the mask for padding, of shape (batch_size, seq_len);
                True means masked position.  May be None.

        Returns: a Tensor with the same shape as src.
        """
        pos_emb = self.encoder_pos(src)
        if self.time_emb is not None:
            assert time_emb is not None
            time_emb = self.time_emb(time_emb)
        else:
            assert time_emb is None

        output = src

        for i, mod in enumerate(self.layers):
            output = mod(
                output,
                pos_emb,
                time_emb=time_emb,
                attn_mask=attn_mask,
                src_key_padding_mask=src_key_padding_mask,
            )

        return output


class BypassModule(nn.Module):
    """
    An nn.Module that implements a learnable bypass scale, and also randomized
    per-sequence layer-skipping.  The bypass is limited during early stages of training
    to be close to "straight-through", i.e. to not do the bypass operation much
    initially, in order to force all the modules to learn something.
    """

    def __init__(
        self,
        embed_dim: int,
        skip_rate: FloatLike = 0.0,
        straight_through_rate: FloatLike = 0.0,
        scale_min: FloatLike = ScheduledFloat((0.0, 0.9), (20000.0, 0.2), default=0),
        scale_max: FloatLike = 1.0,
    ):
        super().__init__()
        self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))
        self.skip_rate = copy.deepcopy(skip_rate)
        self.straight_through_rate = copy.deepcopy(straight_through_rate)
        self.scale_min = copy.deepcopy(scale_min)
        self.scale_max = copy.deepcopy(scale_max)

    def _get_bypass_scale(self, batch_size: int):
        # returns bypass-scale of shape (num_channels,),
        # or (batch_size, num_channels,).  This is actually the
        # scale on the non-residual term, so 0 corresponds to bypassing
        # this module.
        if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training:
            return self.bypass_scale
        else:
            ans = limit_param_value(
                self.bypass_scale,
                min=float(self.scale_min),
                max=float(self.scale_max),
            )
            skip_rate = float(self.skip_rate)
            if skip_rate != 0.0:
                mask = torch.rand((batch_size, 1), device=ans.device) > skip_rate
                ans = ans * mask
                # now ans is of shape (batch_size, num_channels), and is zero for
                # sequences on which we have randomly chosen to do layer-skipping.
            straight_through_rate = float(self.straight_through_rate)
            if straight_through_rate != 0.0:
                mask = (
                    torch.rand((batch_size, 1), device=ans.device)
                    < straight_through_rate
                )
                ans = torch.maximum(ans, mask.to(ans.dtype))
            return ans

    def forward(self, src_orig: Tensor, src: Tensor):
        """
        Args: src_orig and src are both of shape (seq_len, batch_size, num_channels)
        Returns: something with the same shape as src and src_orig
        """
        bypass_scale = self._get_bypass_scale(src.shape[1])
        return src_orig + (src - src_orig) * bypass_scale


class DownsampledZipformer2Encoder(nn.Module):
    r"""
    DownsampledZipformer2Encoder is a zipformer encoder evaluated at a reduced frame
    rate, after convolutional downsampling, and then upsampled again at the output, and
    combined with the origin input, so that the output has the same shape as the input.
    """

    def __init__(self, encoder: nn.Module, dim: int, downsample: int):
        super(DownsampledZipformer2Encoder, self).__init__()
        self.downsample_factor = downsample
        self.downsample = SimpleDownsample(downsample)
        self.num_layers = encoder.num_layers
        self.encoder = encoder
        self.upsample = SimpleUpsample(downsample)
        self.out_combiner = BypassModule(dim, straight_through_rate=0)

    def forward(
        self,
        src: Tensor,
        time_emb: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
        src_key_padding_mask: Optional[Tensor] = None,
    ) -> Tensor:
        r"""Downsample, go through encoder, upsample.

        Args:
            src: the sequence to the encoder (required):
                shape (seq_len, batch_size, embedding_dim).
            time_emb: the embedding representing the current timestep:
                shape  (batch_size, embedding_dim)
                or (seq_len, batch_size, embedding_dim) .
            feature_mask: something that broadcasts with src, that we'll multiply `src`
                by at every layer: if a Tensor, likely of shape
                (seq_len, batch_size, embedding_dim)
            attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len)
                or (seq_len, seq_len), interpreted as
                (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
                True means masked position. May be None.
            src_key_padding_mask:  the mask for padding, of shape (batch_size, seq_len);
                True means masked position.  May be None.

        Returns: a Tensor with the same shape as src.
        """
        src_orig = src
        src = self.downsample(src)
        ds = self.downsample_factor
        if time_emb is not None and time_emb.dim() == 3:
            time_emb = time_emb[::ds]
        if attn_mask is not None:
            attn_mask = attn_mask[::ds, ::ds]
        if src_key_padding_mask is not None:
            src_key_padding_mask = src_key_padding_mask[..., ::ds]

        src = self.encoder(
            src,
            time_emb=time_emb,
            attn_mask=attn_mask,
            src_key_padding_mask=src_key_padding_mask,
        )
        src = self.upsample(src)
        # remove any extra frames that are not a multiple of downsample_factor
        src = src[: src_orig.shape[0]]

        return self.out_combiner(src_orig, src)


class SimpleDownsample(torch.nn.Module):
    """
    Does downsampling with attention, by weighted sum.
    """

    def __init__(self, downsample: int):
        super(SimpleDownsample, self).__init__()

        self.bias = nn.Parameter(torch.zeros(downsample))

        self.name = None  # will be set from training code

        self.downsample = downsample

    def forward(self, src: Tensor) -> Tensor:
        """
        x: (seq_len, batch_size, in_channels)
        Returns a tensor of shape
           ( (seq_len+downsample-1)//downsample, batch_size, channels)
        """
        (seq_len, batch_size, in_channels) = src.shape
        ds = self.downsample
        d_seq_len = (seq_len + ds - 1) // ds

        # Pad to an exact multiple of self.downsample
        # right-pad src, repeating the last element.
        pad = d_seq_len * ds - seq_len
        src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2])
        src = torch.cat((src, src_extra), dim=0)
        assert src.shape[0] == d_seq_len * ds

        src = src.reshape(d_seq_len, ds, batch_size, in_channels)

        weights = self.bias.softmax(dim=0)
        # weights: (downsample, 1, 1)
        weights = weights.unsqueeze(-1).unsqueeze(-1)

        # ans1 is the first `in_channels` channels of the output
        ans = (src * weights).sum(dim=1)

        return ans


class SimpleUpsample(torch.nn.Module):
    """
    A very simple form of upsampling that just repeats the input.
    """

    def __init__(self, upsample: int):
        super(SimpleUpsample, self).__init__()
        self.upsample = upsample

    def forward(self, src: Tensor) -> Tensor:
        """
        x: (seq_len, batch_size, num_channels)
        Returns a tensor of shape
           ( (seq_len*upsample), batch_size, num_channels)
        """
        upsample = self.upsample
        (seq_len, batch_size, num_channels) = src.shape
        src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels)
        src = src.reshape(seq_len * upsample, batch_size, num_channels)
        return src


class CompactRelPositionalEncoding(torch.nn.Module):
    """
    Relative positional encoding module.  This version is "compact" meaning it is able
    to encode the important information about the relative position in a relatively
    small number of dimensions. The goal is to make it so that small differences between
    large relative offsets (e.g. 1000 vs. 1001) make very little difference to the
    embedding.   Such differences were potentially important when encoding absolute
    position, but not important when encoding relative position because there is now no
    need to compare two large offsets with each other.

    Our embedding works by projecting the interval [-infinity,infinity] to a finite
    interval using the atan() function, before doing the Fourier transform of that fixed
    interval.  The atan() function would compress the "long tails" too small, making it
    hard to distinguish between different magnitudes of large offsets, so we use a
    logarithmic function to compress large offsets to a smaller range before applying
    atan(). Scalings are chosen in such a way that the embedding can clearly distinguish
    individual offsets as long as they are quite close to the origin, e.g. abs(offset)
    <= about sqrt(embedding_dim)


    Args:
        embed_dim: Embedding dimension.
        dropout_rate: Dropout rate.
        max_len: Maximum input length: just a heuristic for initialization.
        length_factor: a heuristic scale (should be >= 1.0) which, if larger, gives
           less weight to small differences of offset near the origin.
    """

    def __init__(
        self,
        embed_dim: int,
        dropout_rate: FloatLike,
        max_len: int = 1000,
        length_factor: float = 1.0,
    ) -> None:
        """Construct a CompactRelPositionalEncoding object."""
        super(CompactRelPositionalEncoding, self).__init__()
        self.embed_dim = embed_dim
        assert embed_dim % 2 == 0, embed_dim
        self.dropout = Dropout2(dropout_rate)
        self.pe = None
        assert length_factor >= 1.0, length_factor
        self.length_factor = length_factor
        self.extend_pe(torch.tensor(0.0).expand(max_len))

    def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None:
        """Reset the positional encodings."""
        T = x.size(0) + left_context_len

        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.size(0) >= T * 2 - 1:
                self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return

        # if T == 4, x would contain [ -3, -2, 1, 0, 1, 2, 3 ]
        x = torch.arange(-(T - 1), T, device=x.device).to(torch.float32).unsqueeze(1)

        freqs = 1 + torch.arange(self.embed_dim // 2, device=x.device)

        # `compression_length` this is arbitrary/heuristic, if it is larger we have more
        # resolution for small time offsets but less resolution for large time offsets.
        compression_length = self.embed_dim**0.5
        # x_compressed, like X, goes from -infinity to infinity as T goes from -infinity
        # to infinity; but it does so more slowly than T for large absolute values of T.
        # The formula is chosen so that d(x_compressed )/dx is 1 around x == 0, which is
        # important.
        x_compressed = (
            compression_length
            * x.sign()
            * ((x.abs() + compression_length).log() - math.log(compression_length))
        )

        # if self.length_factor == 1.0, then length_scale is chosen so that the
        # FFT can exactly separate points close to the origin (T == 0).  So this
        # part of the formulation is not really heuristic.
        # But empirically, for ASR at least, length_factor > 1.0 seems to work better.
        length_scale = self.length_factor * self.embed_dim / (2.0 * math.pi)

        # note for machine implementations: if atan is not available, we can use:
        #   x.sign() * ((1 / (x.abs() + 1)) - 1)  * (-math.pi/2)
        #  check on wolframalpha.com: plot(sign(x) *  (1 / ( abs(x) + 1) - 1 ) * -pi/2 ,
        #  atan(x))
        x_atan = (x_compressed / length_scale).atan()  # results between -pi and pi

        cosines = (x_atan * freqs).cos()
        sines = (x_atan * freqs).sin()

        pe = torch.zeros(x.shape[0], self.embed_dim, device=x.device)
        pe[:, 0::2] = cosines
        pe[:, 1::2] = sines
        pe[:, -1] = 1.0  # for bias.

        self.pe = pe.to(dtype=x.dtype)

    def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor:
        """Create positional encoding.

        Args:
            x (Tensor): Input tensor (time, batch, `*`).
            left_context_len: (int): Length of cached left context.

        Returns:
            positional embedding, of shape (batch, left_context_len + 2*time-1, `*`).
        """
        self.extend_pe(x, left_context_len)
        x_size_left = x.size(0) + left_context_len
        # length of positive side: x.size(0) + left_context_len
        # length of negative side: x.size(0)
        pos_emb = self.pe[
            self.pe.size(0) // 2
            - x_size_left
            + 1 : self.pe.size(0) // 2  # noqa E203
            + x.size(0),
            :,
        ]
        pos_emb = pos_emb.unsqueeze(0)
        return self.dropout(pos_emb)


class RelPositionMultiheadAttentionWeights(nn.Module):
    r"""Module that computes multi-head attention weights with relative position
    encoding. Various other modules consume the resulting attention weights:
    see, for example, the SimpleAttention module which allows you to compute
    conventional attention.

    This is a quite heavily modified from: "Transformer-XL: Attentive Language
        Models Beyond a Fixed-Length Context",
    we have to write up the differences.


    Args:
           embed_dim: number of channels at the input to this module, e.g. 256
             pos_dim: dimension of the positional encoding vectors, e.g. 128.
           num_heads:  number of heads to compute weights for, e.g. 8
     query_head_dim: dimension of the query (and key), per head.  e.g. 24.
       pos_head_dim: dimension of the projected positional encoding per head, e.g. 4.
            dropout: dropout probability for attn_output_weights. Default: 0.0.
       pos_emb_skip_rate: probability for skipping the pos_emb part of the scores on
                     any given call to forward(), in training time.
    """

    def __init__(
        self,
        embed_dim: int,
        pos_dim: int,
        num_heads: int,
        query_head_dim: int,
        pos_head_dim: int,
        dropout: float = 0.0,
        pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)),
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.query_head_dim = query_head_dim
        self.pos_head_dim = pos_head_dim
        self.dropout = dropout
        self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate)
        self.name = None  # will be overwritten in training code; for diagnostics.

        key_head_dim = query_head_dim
        in_proj_dim = (query_head_dim + key_head_dim + pos_head_dim) * num_heads

        # the initial_scale is supposed to take over the "scaling" factor of
        # head_dim ** -0.5 that has been used in previous forms of attention,
        # dividing it between the query and key.   Note: this module is intended
        # to be used with the ScaledAdam optimizer; with most other optimizers,
        # it would be necessary to apply the scaling factor in the forward function.
        self.in_proj = ScaledLinear(
            embed_dim,
            in_proj_dim,
            bias=True,
            initial_scale=query_head_dim**-0.25,
        )

        self.whiten_keys = Whiten(
            num_groups=num_heads,
            whitening_limit=_whitening_schedule(3.0),
            prob=(0.025, 0.25),
            grad_scale=0.025,
        )

        # add a balancer for the keys that runs with very small probability, and
        # tries to enforce that all dimensions have mean around zero.  The
        # weights produced by this module are invariant to adding a constant to
        # the keys, so the derivative of the bias is mathematically zero; but
        # due to how Adam/ScaledAdam work, it can learn a fairly large nonzero
        # bias because the small numerical roundoff tends to have a non-random
        # sign.  This module is intended to prevent that.  Use a very small
        # probability; that should be sufficient to fix the problem.
        self.balance_keys = Balancer(
            key_head_dim * num_heads,
            channel_dim=-1,
            min_positive=0.4,
            max_positive=0.6,
            min_abs=0.0,
            max_abs=100.0,
            prob=0.025,
        )

        # linear transformation for positional encoding.
        self.linear_pos = ScaledLinear(
            pos_dim, num_heads * pos_head_dim, bias=False, initial_scale=0.05
        )

        # the following are for diagnostics only, see --print-diagnostics option
        self.copy_pos_query = Identity()
        self.copy_query = Identity()

    def forward(
        self,
        x: Tensor,
        pos_emb: Tensor,
        key_padding_mask: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
    ) -> Tensor:
        r"""
        Args:
            x: input of shape (seq_len, batch_size, embed_dim)
            pos_emb: Positional embedding tensor, of shape (1, 2*seq_len - 1, pos_dim)
            key_padding_mask: a bool tensor of shape (batch_size, seq_len).
                Positions that are True in this mask will be ignored as sources in the
                attention weighting.
            attn_mask: mask of shape (seq_len, seq_len) or
                (batch_size, seq_len, seq_len), interpreted as
                ([batch_size,] tgt_seq_len, src_seq_len)
               saying which positions are allowed to attend to which other positions.
        Returns:
           a tensor of attention weights, of
            shape (hum_heads, batch_size, seq_len, seq_len)
           interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len).
        """
        x = self.in_proj(x)
        query_head_dim = self.query_head_dim
        pos_head_dim = self.pos_head_dim
        num_heads = self.num_heads

        seq_len, batch_size, _ = x.shape

        query_dim = query_head_dim * num_heads

        # self-attention
        q = x[..., 0:query_dim]
        k = x[..., query_dim : 2 * query_dim]
        # p is the position-encoding query
        p = x[..., 2 * query_dim :]
        assert p.shape[-1] == num_heads * pos_head_dim, (
            p.shape[-1],
            num_heads,
            pos_head_dim,
        )

        q = self.copy_query(q)  # for diagnostics only, does nothing.
        k = self.whiten_keys(self.balance_keys(k))  # does nothing in the forward pass.
        p = self.copy_pos_query(p)  # for diagnostics only, does nothing.

        q = q.reshape(seq_len, batch_size, num_heads, query_head_dim)
        p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim)
        k = k.reshape(seq_len, batch_size, num_heads, query_head_dim)

        # time1 refers to target, time2 refers to source.
        q = q.permute(2, 1, 0, 3)  # (head, batch, time1, query_head_dim)
        p = p.permute(2, 1, 0, 3)  # (head, batch, time1, pos_head_dim)
        k = k.permute(2, 1, 3, 0)  # (head, batch, d_k, time2)

        attn_scores = torch.matmul(q, k)

        use_pos_scores = False
        if torch.jit.is_scripting() or torch.jit.is_tracing():
            # We can't put random.random() in the same line
            use_pos_scores = True
        elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
            use_pos_scores = True

        if use_pos_scores:
            pos_emb = self.linear_pos(pos_emb)
            seq_len2 = 2 * seq_len - 1
            pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
                2, 0, 3, 1
            )
            # pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)

            # (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head,
            #  batch, time1, seq_len2) [where seq_len2 represents relative position.]
            pos_scores = torch.matmul(p, pos_emb)
            # the following .as_strided() expression converts the last axis of
            # pos_scores from relative to absolute position.  I don't know whether I
            # might have got the time-offsets backwards or not, but let this code define
            # which way round it is supposed to be.
            if torch.jit.is_tracing():
                (num_heads, batch_size, time1, n) = pos_scores.shape
                rows = torch.arange(start=time1 - 1, end=-1, step=-1)
                cols = torch.arange(seq_len)
                rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
                indexes = rows + cols
                pos_scores = pos_scores.reshape(-1, n)
                pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
                pos_scores = pos_scores.reshape(num_heads, batch_size, time1, seq_len)
            else:
                pos_scores = pos_scores.as_strided(
                    (num_heads, batch_size, seq_len, seq_len),
                    (
                        pos_scores.stride(0),
                        pos_scores.stride(1),
                        pos_scores.stride(2) - pos_scores.stride(3),
                        pos_scores.stride(3),
                    ),
                    storage_offset=pos_scores.stride(3) * (seq_len - 1),
                )

            attn_scores = attn_scores + pos_scores

        if torch.jit.is_scripting() or torch.jit.is_tracing():
            pass
        elif self.training and random.random() < 0.1:
            # This is a harder way of limiting the attention scores to not be
            # too large.  It incurs a penalty if any of them has an absolute
            # value greater than 50.0.  this should be outside the normal range
            # of the attention scores.  We use this mechanism instead of, say,
            # something added to the loss function involving the entropy,
            # because once the entropy gets very small gradients through the
            # softmax can become very small, and we'd get zero derivatives.  The
            # choices of 1.0e-04 as the scale on the penalty makes this
            # mechanism vulnerable to the absolute scale of the loss function,
            # but we view this as a failsafe to avoid "implausible" parameter
            # values rather than a regularization method that should be active
            # under normal circumstances.
            attn_scores = penalize_abs_values_gt(
                attn_scores, limit=25.0, penalty=1.0e-04, name=self.name
            )

        assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len)

        if attn_mask is not None:
            assert attn_mask.dtype == torch.bool
            # use -1000 to avoid nan's where attn_mask and key_padding_mask make
            # all scores zero.  It's important that this be large enough that exp(-1000)
            # is exactly zero, for reasons related to const_attention_rate, it
            # compares the final weights with zero.
            attn_scores = attn_scores.masked_fill(attn_mask, -1000)

        if key_padding_mask is not None:
            assert key_padding_mask.shape == (
                batch_size,
                seq_len,
            ), key_padding_mask.shape
            attn_scores = attn_scores.masked_fill(
                key_padding_mask.unsqueeze(1),
                -1000,
            )

        # We use our own version of softmax, defined in scaling.py, which should
        # save a little of the memory used in backprop by, if we are in
        # automatic mixed precision mode (amp / autocast), by only storing the
        # half-precision output for backprop purposes.
        attn_weights = softmax(attn_scores, dim=-1)

        if torch.jit.is_scripting() or torch.jit.is_tracing():
            pass
        elif random.random() < 0.001 and not self.training:
            self._print_attn_entropy(attn_weights)

        attn_weights = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )

        return attn_weights

    def _print_attn_entropy(self, attn_weights: Tensor):
        # attn_weights: (num_heads, batch_size, seq_len, seq_len)
        (num_heads, batch_size, seq_len, seq_len) = attn_weights.shape

        with torch.no_grad():
            with torch.amp.autocast("cuda", enabled=False):
                attn_weights = attn_weights.to(torch.float32)
                attn_weights_entropy = (
                    -((attn_weights + 1.0e-20).log() * attn_weights)
                    .sum(dim=-1)
                    .mean(dim=(1, 2))
                )
                logging.debug(
                    f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}"
                )


class SelfAttention(nn.Module):
    """
    The simplest possible attention module.  This one works with already-computed
    attention weights, e.g. as computed by RelPositionMultiheadAttentionWeights.

    Args:
          embed_dim: the input and output embedding dimension
          num_heads: the number of attention heads
          value_head_dim: the value dimension per head
    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        value_head_dim: int,
    ) -> None:
        super().__init__()
        self.in_proj = nn.Linear(embed_dim, num_heads * value_head_dim, bias=True)

        self.out_proj = ScaledLinear(
            num_heads * value_head_dim,
            embed_dim,
            bias=True,
            initial_scale=0.05,
        )

        self.whiten = Whiten(
            num_groups=1,
            whitening_limit=_whitening_schedule(7.5, ratio=3.0),
            prob=(0.025, 0.25),
            grad_scale=0.01,
        )

    def forward(
        self,
        x: Tensor,
        attn_weights: Tensor,
    ) -> Tensor:
        """
        Args:
          x: input tensor, of shape (seq_len, batch_size, embed_dim)
         attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len),
          with seq_len being interpreted as (tgt_seq_len, src_seq_len).  Expect
          attn_weights.sum(dim=-1) == 1.
        Returns:
           a tensor with the same shape as x.
        """
        (seq_len, batch_size, embed_dim) = x.shape
        num_heads = attn_weights.shape[0]
        assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len)

        x = self.in_proj(x)  # (seq_len, batch_size, num_heads * value_head_dim)
        x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
        # now x: (num_heads, batch_size, seq_len, value_head_dim)
        value_head_dim = x.shape[-1]

        # todo: see whether there is benefit in overriding matmul
        x = torch.matmul(attn_weights, x)
        # v: (num_heads, batch_size, seq_len, value_head_dim)

        x = (
            x.permute(2, 1, 0, 3)
            .contiguous()
            .view(seq_len, batch_size, num_heads * value_head_dim)
        )

        # returned value is of shape (seq_len, batch_size, embed_dim), like the input.
        x = self.out_proj(x)
        x = self.whiten(x)

        return x


class FeedforwardModule(nn.Module):
    """Feedforward module in TTSZipformer model."""

    def __init__(self, embed_dim: int, feedforward_dim: int, dropout: FloatLike):
        super(FeedforwardModule, self).__init__()
        self.in_proj = nn.Linear(embed_dim, feedforward_dim)

        self.hidden_balancer = Balancer(
            feedforward_dim,
            channel_dim=-1,
            min_positive=0.3,
            max_positive=1.0,
            min_abs=0.75,
            max_abs=5.0,
        )

        # shared_dim=0 means we share the dropout mask along the time axis
        self.out_proj = ActivationDropoutAndLinear(
            feedforward_dim,
            embed_dim,
            activation="SwooshL",
            dropout_p=dropout,
            dropout_shared_dim=0,
            bias=True,
            initial_scale=0.1,
        )

        self.out_whiten = Whiten(
            num_groups=1,
            whitening_limit=_whitening_schedule(7.5),
            prob=(0.025, 0.25),
            grad_scale=0.01,
        )

    def forward(self, x: Tensor):
        x = self.in_proj(x)
        x = self.hidden_balancer(x)
        # out_proj contains SwooshL activation, then dropout, then linear.
        x = self.out_proj(x)
        x = self.out_whiten(x)
        return x


class NonlinAttention(nn.Module):
    """This is like the ConvolutionModule, but refactored so that we use multiplication
       by attention weights (borrowed from the attention module) in place of actual
       convolution.  We also took out the second nonlinearity, the one after the
       attention mechanism.

    Args:
        channels (int): The number of channels of conv layers.
    """

    def __init__(
        self,
        channels: int,
        hidden_channels: int,
    ) -> None:
        super().__init__()

        self.hidden_channels = hidden_channels

        self.in_proj = nn.Linear(channels, hidden_channels * 3, bias=True)

        # balancer that goes before the sigmoid.  Have quite a large min_abs value, at
        # 2.0, because we noticed that well-trained instances of this module have
        # abs-value before the sigmoid starting from about 3, and poorly-trained
        # instances of the module have smaller abs values before the sigmoid.
        self.balancer = Balancer(
            hidden_channels,
            channel_dim=-1,
            min_positive=ScheduledFloat((0.0, 0.25), (20000.0, 0.05)),
            max_positive=ScheduledFloat((0.0, 0.75), (20000.0, 0.95)),
            min_abs=0.5,
            max_abs=5.0,
        )
        self.tanh = nn.Tanh()

        self.identity1 = Identity()  # for diagnostics.
        self.identity2 = Identity()  # for diagnostics.
        self.identity3 = Identity()  # for diagnostics.

        self.out_proj = ScaledLinear(
            hidden_channels, channels, bias=True, initial_scale=0.05
        )

        self.whiten1 = Whiten(
            num_groups=1,
            whitening_limit=_whitening_schedule(5.0),
            prob=(0.025, 0.25),
            grad_scale=0.01,
        )

        self.whiten2 = Whiten(
            num_groups=1,
            whitening_limit=_whitening_schedule(5.0, ratio=3.0),
            prob=(0.025, 0.25),
            grad_scale=0.01,
        )

    def forward(
        self,
        x: Tensor,
        attn_weights: Tensor,
    ) -> Tensor:
        """.
        Args:
            x: a Tensor of shape (seq_len, batch_size, num_channels)
            attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
        Returns:
            a Tensor with the same shape as x
        """
        x = self.in_proj(x)

        (seq_len, batch_size, _) = x.shape
        hidden_channels = self.hidden_channels

        s, x, y = x.chunk(3, dim=2)

        # s will go through tanh.

        s = self.balancer(s)
        s = self.tanh(s)

        s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels)
        x = self.whiten1(x)
        x = x * s
        x = self.identity1(x)  # diagnostics only, it's the identity.

        (seq_len, batch_size, embed_dim) = x.shape
        num_heads = attn_weights.shape[0]
        assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len)

        x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
        # now x: (num_heads, batch_size, seq_len, head_dim)
        x = torch.matmul(attn_weights, x)
        # now x: (num_heads, batch_size, seq_len, head_dim)
        x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1)

        y = self.identity2(y)
        x = x * y
        x = self.identity3(x)

        x = self.out_proj(x)
        x = self.whiten2(x)
        return x


class ConvolutionModule(nn.Module):
    """ConvolutionModule in Zipformer2 model.

    Args:
        channels (int): The number of channels of conv layers.
        kernel_size (int): Kernerl size of conv layers.
        bias (bool): Whether to use bias in conv layers (default=True).

    """

    def __init__(
        self,
        channels: int,
        kernel_size: int,
    ) -> None:
        """Construct a ConvolutionModule object."""
        super(ConvolutionModule, self).__init__()
        # kernerl_size should be a odd number for 'SAME' padding
        assert (kernel_size - 1) % 2 == 0

        bottleneck_dim = channels

        self.in_proj = nn.Linear(
            channels,
            2 * bottleneck_dim,
        )
        # the gradients on in_proj are a little noisy, likely to do with the
        # sigmoid in glu.

        # after in_proj we put x through a gated linear unit (nn.functional.glu). For
        # most layers the normal rms value of channels of x seems to be in the range 1
        # to 4, but sometimes, for some reason, for layer 0 the rms ends up being very
        # large, between 50 and 100 for different channels.  This will cause very peaky
        # and sparse derivatives for the sigmoid gating function, which will tend to
        # make the loss function not learn effectively.  (for most layers the average
        # absolute values are in the range 0.5..9.0, and the average p(x>0), i.e.
        # positive proportion, at the output of pointwise_conv1.output is around 0.35 to
        # 0.45 for different layers, which likely breaks down as 0.5 for the "linear"
        # half and 0.2 to 0.3 for the part that goes into the sigmoid.  The idea is that
        # if we constrain the rms values to a reasonable range via a constraint of
        # max_abs=10.0, it will be in a better position to start learning something,
        # i.e. to latch onto the correct range.
        self.balancer1 = Balancer(
            bottleneck_dim,
            channel_dim=-1,
            min_positive=ScheduledFloat((0.0, 0.05), (8000.0, 0.025)),
            max_positive=1.0,
            min_abs=1.5,
            max_abs=ScheduledFloat((0.0, 5.0), (8000.0, 10.0), default=1.0),
        )

        self.activation1 = Identity()  # for diagnostics

        self.sigmoid = nn.Sigmoid()

        self.activation2 = Identity()  # for diagnostics

        assert kernel_size % 2 == 1

        self.depthwise_conv = nn.Conv1d(
            in_channels=bottleneck_dim,
            out_channels=bottleneck_dim,
            groups=bottleneck_dim,
            kernel_size=kernel_size,
            padding=kernel_size // 2,
        )

        self.balancer2 = Balancer(
            bottleneck_dim,
            channel_dim=1,
            min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)),
            max_positive=1.0,
            min_abs=ScheduledFloat((0.0, 0.2), (20000.0, 0.5)),
            max_abs=10.0,
        )

        self.whiten = Whiten(
            num_groups=1,
            whitening_limit=_whitening_schedule(7.5),
            prob=(0.025, 0.25),
            grad_scale=0.01,
        )

        self.out_proj = ActivationDropoutAndLinear(
            bottleneck_dim,
            channels,
            activation="SwooshR",
            dropout_p=0.0,
            initial_scale=0.05,
        )

    def forward(
        self,
        x: Tensor,
        src_key_padding_mask: Optional[Tensor] = None,
    ) -> Tensor:
        """Compute convolution module.

        Args:
            x: Input tensor (#time, batch, channels).
           src_key_padding_mask: the mask for the src keys per batch (optional):
               (batch, #time), contains True in masked positions.

        Returns:
            Tensor: Output tensor (#time, batch, channels).

        """

        x = self.in_proj(x)  # (time, batch, 2*channels)

        x, s = x.chunk(2, dim=2)
        s = self.balancer1(s)
        s = self.sigmoid(s)
        x = self.activation1(x)  # identity.
        x = x * s
        x = self.activation2(x)  # identity

        # (time, batch, channels)

        # exchange the temporal dimension and the feature dimension
        x = x.permute(1, 2, 0)  # (#batch, channels, time).

        if src_key_padding_mask is not None:
            x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)

        x = self.depthwise_conv(x)

        x = self.balancer2(x)
        x = x.permute(2, 0, 1)  # (time, batch, channels)

        x = self.whiten(x)  # (time, batch, channels)
        x = self.out_proj(x)  # (time, batch, channels)

        return x