File size: 20,068 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# Copyright 2024 Xiaomi Corp. (authors: Wei Kang
# Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from zipvoice.models.modules.solver import EulerSolver
from zipvoice.models.modules.zipformer import TTSZipformer
from zipvoice.utils.common import (
condition_time_mask,
get_tokens_index,
make_pad_mask,
pad_labels,
prepare_avg_tokens_durations,
)
class ZipVoice(nn.Module):
"""The ZipVoice model."""
def __init__(
self,
fm_decoder_downsampling_factor: List[int] = [1, 2, 4, 2, 1],
fm_decoder_num_layers: List[int] = [2, 2, 4, 4, 4],
fm_decoder_cnn_module_kernel: List[int] = [31, 15, 7, 15, 31],
fm_decoder_feedforward_dim: int = 1536,
fm_decoder_num_heads: int = 4,
fm_decoder_dim: int = 512,
text_encoder_num_layers: int = 4,
text_encoder_feedforward_dim: int = 512,
text_encoder_cnn_module_kernel: int = 9,
text_encoder_num_heads: int = 4,
text_encoder_dim: int = 192,
time_embed_dim: int = 192,
text_embed_dim: int = 192,
query_head_dim: int = 32,
value_head_dim: int = 12,
pos_head_dim: int = 4,
pos_dim: int = 48,
feat_dim: int = 100,
vocab_size: int = 26,
pad_id: int = 0,
):
"""
Initialize the model with specified configuration parameters.
Args:
fm_decoder_downsampling_factor: List of downsampling factors for each layer
in the flow-matching decoder.
fm_decoder_num_layers: List of the number of layers for each block in the
flow-matching decoder.
fm_decoder_cnn_module_kernel: List of kernel sizes for CNN modules in the
flow-matching decoder.
fm_decoder_feedforward_dim: Dimension of the feedforward network in the
flow-matching decoder.
fm_decoder_num_heads: Number of attention heads in the flow-matching
decoder.
fm_decoder_dim: Hidden dimension of the flow-matching decoder.
text_encoder_num_layers: Number of layers in the text encoder.
text_encoder_feedforward_dim: Dimension of the feedforward network in the
text encoder.
text_encoder_cnn_module_kernel: Kernel size for the CNN module in the
text encoder.
text_encoder_num_heads: Number of attention heads in the text encoder.
text_encoder_dim: Hidden dimension of the text encoder.
time_embed_dim: Dimension of the time embedding.
text_embed_dim: Dimension of the text embedding.
query_head_dim: Dimension of the query attention head.
value_head_dim: Dimension of the value attention head.
pos_head_dim: Dimension of the position attention head.
pos_dim: Dimension of the positional encoding.
feat_dim: Dimension of the acoustic features.
vocab_size: Size of the vocabulary.
pad_id: ID used for padding tokens.
"""
super().__init__()
self.fm_decoder = TTSZipformer(
in_dim=feat_dim * 3,
out_dim=feat_dim,
downsampling_factor=fm_decoder_downsampling_factor,
num_encoder_layers=fm_decoder_num_layers,
cnn_module_kernel=fm_decoder_cnn_module_kernel,
encoder_dim=fm_decoder_dim,
feedforward_dim=fm_decoder_feedforward_dim,
num_heads=fm_decoder_num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
value_head_dim=value_head_dim,
pos_dim=pos_dim,
use_time_embed=True,
time_embed_dim=time_embed_dim,
)
self.text_encoder = TTSZipformer(
in_dim=text_embed_dim,
out_dim=feat_dim,
downsampling_factor=1,
num_encoder_layers=text_encoder_num_layers,
cnn_module_kernel=text_encoder_cnn_module_kernel,
encoder_dim=text_encoder_dim,
feedforward_dim=text_encoder_feedforward_dim,
num_heads=text_encoder_num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
value_head_dim=value_head_dim,
pos_dim=pos_dim,
use_time_embed=False,
)
self.feat_dim = feat_dim
self.text_embed_dim = text_embed_dim
self.pad_id = pad_id
self.embed = nn.Embedding(vocab_size, text_embed_dim)
self.solver = EulerSolver(self, func_name="forward_fm_decoder")
def forward_fm_decoder(
self,
t: torch.Tensor,
xt: torch.Tensor,
text_condition: torch.Tensor,
speech_condition: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
guidance_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute velocity.
Args:
t: A tensor of shape (N, 1, 1) or a tensor of a float,
in the range of (0, 1).
xt: the input of the current timestep, including condition
embeddings and noisy acoustic features.
text_condition: the text condition embeddings, with the
shape (batch, seq_len, emb_dim).
speech_condition: the speech condition embeddings, with the
shape (batch, seq_len, emb_dim).
padding_mask: The mask for padding, True means masked
position, with the shape (N, T).
guidance_scale: The guidance scale in classifier-free guidance,
which is a tensor of shape (N, 1, 1) or a tensor of a float.
Returns:
predicted velocity, with the shape (batch, seq_len, emb_dim).
"""
xt = torch.cat([xt, text_condition, speech_condition], dim=2)
assert t.dim() in (0, 3)
# Handle t with the shape (N, 1, 1):
# squeeze the last dimension if it's size is 1.
while t.dim() > 1 and t.size(-1) == 1:
t = t.squeeze(-1)
# Handle t with a single value: expand to the size of batch size.
if t.dim() == 0:
t = t.repeat(xt.shape[0])
if guidance_scale is not None:
while guidance_scale.dim() > 1 and guidance_scale.size(-1) == 1:
guidance_scale = guidance_scale.squeeze(-1)
if guidance_scale.dim() == 0:
guidance_scale = guidance_scale.repeat(xt.shape[0])
vt = self.fm_decoder(
x=xt, t=t, padding_mask=padding_mask, guidance_scale=guidance_scale
)
else:
vt = self.fm_decoder(x=xt, t=t, padding_mask=padding_mask)
return vt
def forward_text_embed(
self,
tokens: List[List[int]],
):
"""
Get the text embeddings.
Args:
tokens: a list of list of token ids.
Returns:
embed: the text embeddings, shape (batch, seq_len, emb_dim).
tokens_lens: the length of each token sequence, shape (batch,).
"""
device = (
self.device if isinstance(self, DDP) else next(self.parameters()).device
)
tokens_padded = pad_labels(tokens, pad_id=self.pad_id, device=device) # (B, S)
embed = self.embed(tokens_padded) # (B, S, C)
tokens_lens = torch.tensor(
[len(token) for token in tokens], dtype=torch.int64, device=device
)
tokens_padding_mask = make_pad_mask(tokens_lens, embed.shape[1]) # (B, S)
embed = self.text_encoder(
x=embed, t=None, padding_mask=tokens_padding_mask
) # (B, S, C)
return embed, tokens_lens
def forward_text_condition(
self,
embed: torch.Tensor,
tokens_lens: torch.Tensor,
features_lens: torch.Tensor,
):
"""
Get the text condition with the same length of the acoustic feature.
Args:
embed: the text embeddings, shape (batch, token_seq_len, emb_dim).
tokens_lens: the length of each token sequence, shape (batch,).
features_lens: the length of each acoustic feature sequence,
shape (batch,).
Returns:
text_condition: the text condition, shape
(batch, feature_seq_len, emb_dim).
padding_mask: the padding mask of text condition, shape
(batch, feature_seq_len).
"""
num_frames = int(features_lens.max())
padding_mask = make_pad_mask(features_lens, max_len=num_frames) # (B, T)
tokens_durations = prepare_avg_tokens_durations(features_lens, tokens_lens)
tokens_index = get_tokens_index(tokens_durations, num_frames).to(
embed.device
) # (B, T)
text_condition = torch.gather(
embed,
dim=1,
index=tokens_index.unsqueeze(-1).expand(
embed.size(0), num_frames, embed.size(-1)
),
) # (B, T, F)
return text_condition, padding_mask
def forward_text_train(
self,
tokens: List[List[int]],
features_lens: torch.Tensor,
):
"""
Process text for training, given text tokens and real feature lengths.
"""
embed, tokens_lens = self.forward_text_embed(tokens)
text_condition, padding_mask = self.forward_text_condition(
embed, tokens_lens, features_lens
)
return (
text_condition,
padding_mask,
)
def forward_text_inference_gt_duration(
self,
tokens: List[List[int]],
features_lens: torch.Tensor,
prompt_tokens: List[List[int]],
prompt_features_lens: torch.Tensor,
):
"""
Process text for inference, given text tokens, real feature lengths and prompts.
"""
tokens = [
prompt_token + token for prompt_token, token in zip(prompt_tokens, tokens)
]
features_lens = prompt_features_lens + features_lens
embed, tokens_lens = self.forward_text_embed(tokens)
text_condition, padding_mask = self.forward_text_condition(
embed, tokens_lens, features_lens
)
return text_condition, padding_mask
def forward_text_inference_ratio_duration(
self,
tokens: List[List[int]],
prompt_tokens: List[List[int]],
prompt_features_lens: torch.Tensor,
speed: float,
):
"""
Process text for inference, given text tokens and prompts,
feature lengths are predicted with the ratio of token numbers.
"""
device = (
self.device if isinstance(self, DDP) else next(self.parameters()).device
)
cat_tokens = [
prompt_token + token for prompt_token, token in zip(prompt_tokens, tokens)
]
prompt_tokens_lens = torch.tensor(
[len(token) for token in prompt_tokens],
dtype=torch.int64,
device=device,
)
tokens_lens = torch.tensor(
[len(token) for token in tokens],
dtype=torch.int64,
device=device,
)
cat_embed, cat_tokens_lens = self.forward_text_embed(cat_tokens)
features_lens = prompt_features_lens + torch.ceil(
(prompt_features_lens / prompt_tokens_lens * tokens_lens / speed)
).to(dtype=torch.int64)
text_condition, padding_mask = self.forward_text_condition(
cat_embed, cat_tokens_lens, features_lens
)
return text_condition, padding_mask
def forward(
self,
tokens: List[List[int]],
features: torch.Tensor,
features_lens: torch.Tensor,
noise: torch.Tensor,
t: torch.Tensor,
condition_drop_ratio: float = 0.0,
) -> torch.Tensor:
"""Forward pass of the model for training.
Args:
tokens: a list of list of token ids.
features: the acoustic features, with the shape (batch, seq_len, feat_dim).
features_lens: the length of each acoustic feature sequence, shape (batch,).
noise: the intitial noise, with the shape (batch, seq_len, feat_dim).
t: the time step, with the shape (batch, 1, 1).
condition_drop_ratio: the ratio of dropped text condition.
Returns:
fm_loss: the flow-matching loss.
"""
(text_condition, padding_mask,) = self.forward_text_train(
tokens=tokens,
features_lens=features_lens,
)
speech_condition_mask = condition_time_mask(
features_lens=features_lens,
mask_percent=(0.7, 1.0),
max_len=features.size(1),
)
speech_condition = torch.where(speech_condition_mask.unsqueeze(-1), 0, features)
if condition_drop_ratio > 0.0:
drop_mask = (
torch.rand(text_condition.size(0), 1, 1).to(text_condition.device)
> condition_drop_ratio
)
text_condition = text_condition * drop_mask
xt = features * t + noise * (1 - t)
ut = features - noise # (B, T, F)
vt = self.forward_fm_decoder(
t=t,
xt=xt,
text_condition=text_condition,
speech_condition=speech_condition,
padding_mask=padding_mask,
)
loss_mask = speech_condition_mask & (~padding_mask)
fm_loss = torch.mean((vt[loss_mask] - ut[loss_mask]) ** 2)
return fm_loss
def sample(
self,
tokens: List[List[int]],
prompt_tokens: List[List[int]],
prompt_features: torch.Tensor,
prompt_features_lens: torch.Tensor,
features_lens: Optional[torch.Tensor] = None,
speed: float = 1.0,
t_shift: float = 1.0,
duration: str = "predict",
num_step: int = 5,
guidance_scale: float = 0.5,
) -> torch.Tensor:
"""
Generate acoustic features, given text tokens, prompts feature
and prompt transcription's text tokens.
Args:
tokens: a list of list of text tokens.
prompt_tokens: a list of list of prompt tokens.
prompt_features: the prompt feature with the shape
(batch_size, seq_len, feat_dim).
prompt_features_lens: the length of each prompt feature,
with the shape (batch_size,).
features_lens: the length of the predicted eature, with the
shape (batch_size,). It is used only when duration is "real".
duration: "real" or "predict". If "real", the predicted
feature length is given by features_lens.
num_step: the number of steps to use in the ODE solver.
guidance_scale: the guidance scale for classifier-free guidance.
"""
assert duration in ["real", "predict"]
if duration == "predict":
(
text_condition,
padding_mask,
) = self.forward_text_inference_ratio_duration(
tokens=tokens,
prompt_tokens=prompt_tokens,
prompt_features_lens=prompt_features_lens,
speed=speed,
)
else:
assert features_lens is not None
text_condition, padding_mask = self.forward_text_inference_gt_duration(
tokens=tokens,
features_lens=features_lens,
prompt_tokens=prompt_tokens,
prompt_features_lens=prompt_features_lens,
)
batch_size, num_frames, _ = text_condition.shape
speech_condition = torch.nn.functional.pad(
prompt_features, (0, 0, 0, num_frames - prompt_features.size(1))
) # (B, T, F)
# False means speech condition positions.
speech_condition_mask = make_pad_mask(prompt_features_lens, num_frames)
speech_condition = torch.where(
speech_condition_mask.unsqueeze(-1),
torch.zeros_like(speech_condition),
speech_condition,
)
x0 = torch.randn(
batch_size,
num_frames,
prompt_features.size(-1),
device=text_condition.device,
)
x1 = self.solver.sample(
x=x0,
text_condition=text_condition,
speech_condition=speech_condition,
padding_mask=padding_mask,
num_step=num_step,
guidance_scale=guidance_scale,
t_shift=t_shift,
)
x1_wo_prompt_lens = (~padding_mask).sum(-1) - prompt_features_lens
x1_prompt = torch.zeros(
x1.size(0), prompt_features_lens.max(), x1.size(2), device=x1.device
)
x1_wo_prompt = torch.zeros(
x1.size(0), x1_wo_prompt_lens.max(), x1.size(2), device=x1.device
)
for i in range(x1.size(0)):
x1_wo_prompt[i, : x1_wo_prompt_lens[i], :] = x1[
i,
prompt_features_lens[i] : prompt_features_lens[i]
+ x1_wo_prompt_lens[i],
]
x1_prompt[i, : prompt_features_lens[i], :] = x1[
i, : prompt_features_lens[i]
]
return x1_wo_prompt, x1_wo_prompt_lens, x1_prompt, prompt_features_lens
def sample_intermediate(
self,
tokens: List[List[int]],
features: torch.Tensor,
features_lens: torch.Tensor,
noise: torch.Tensor,
speech_condition_mask: torch.Tensor,
t_start: float,
t_end: float,
num_step: int = 1,
guidance_scale: torch.Tensor = None,
) -> torch.Tensor:
"""
Generate acoustic features in intermediate timesteps.
Args:
tokens: List of list of token ids.
features: The acoustic features, with the shape (batch, seq_len, feat_dim).
features_lens: The length of each acoustic feature sequence,
with the shape (batch,).
noise: The initial noise, with the shape (batch, seq_len, feat_dim).
speech_condition_mask: The mask for speech condition, True means
non-condition positions, with the shape (batch, seq_len).
t_start: The start timestep.
t_end: The end timestep.
num_step: The number of steps for sampling.
guidance_scale: The scale for classifier-free guidance inference,
with the shape (batch, 1, 1).
"""
(text_condition, padding_mask,) = self.forward_text_train(
tokens=tokens,
features_lens=features_lens,
)
speech_condition = torch.where(speech_condition_mask.unsqueeze(-1), 0, features)
x_t_end = self.solver.sample(
x=noise,
text_condition=text_condition,
speech_condition=speech_condition,
padding_mask=padding_mask,
num_step=num_step,
guidance_scale=guidance_scale,
t_start=t_start,
t_end=t_end,
)
x_t_end_lens = (~padding_mask).sum(-1)
return x_t_end, x_t_end_lens
|