File size: 6,289 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import re
from abc import ABC, abstractmethod
import cn2an
import inflect
class TextNormalizer(ABC):
"""Abstract base class for text normalization, defining common interface."""
@abstractmethod
def normalize(self, text: str) -> str:
"""Normalize text."""
raise NotImplementedError
class EnglishTextNormalizer(TextNormalizer):
"""
A class to handle preprocessing of English text including normalization. Following:
https://github.com/espnet/espnet_tts_frontend/blob/master/tacotron_cleaner/cleaners.py
"""
def __init__(self):
# List of (regular expression, replacement) pairs for abbreviations:
self._abbreviations = [
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
("etc", "et cetera"),
("btw", "by the way"),
]
]
self._inflect = inflect.engine()
self._comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
self._decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
self._percent_number_re = re.compile(r"([0-9\.\,]*[0-9]+%)")
self._pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
self._dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
self._fraction_re = re.compile(r"([0-9]+)/([0-9]+)")
self._ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
self._number_re = re.compile(r"[0-9]+")
self._whitespace_re = re.compile(r"\s+")
def normalize(self, text: str) -> str:
"""Custom pipeline for English text,
including number and abbreviation expansion."""
text = self.expand_abbreviations(text)
text = self.normalize_numbers(text)
return text
def fraction_to_words(self, numerator, denominator):
if numerator == 1 and denominator == 2:
return " one half "
if numerator == 1 and denominator == 4:
return " one quarter "
if denominator == 2:
return " " + self._inflect.number_to_words(numerator) + " halves "
if denominator == 4:
return " " + self._inflect.number_to_words(numerator) + " quarters "
return (
" "
+ self._inflect.number_to_words(numerator)
+ " "
+ self._inflect.ordinal(self._inflect.number_to_words(denominator))
+ " "
)
def _remove_commas(self, m):
return m.group(1).replace(",", "")
def _expand_dollars(self, m):
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return " " + match + " dollars " # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return " %s %s, %s %s " % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return " %s %s " % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return " %s %s " % (cents, cent_unit)
else:
return " zero dollars "
def _expand_fraction(self, m):
numerator = int(m.group(1))
denominator = int(m.group(2))
return self.fraction_to_words(numerator, denominator)
def _expand_decimal_point(self, m):
return m.group(1).replace(".", " point ")
def _expand_percent(self, m):
return m.group(1).replace("%", " percent ")
def _expand_ordinal(self, m):
return " " + self._inflect.number_to_words(m.group(0)) + " "
def _expand_number(self, m):
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return " two thousand "
elif num > 2000 and num < 2010:
return " two thousand " + self._inflect.number_to_words(num % 100) + " "
elif num % 100 == 0:
return " " + self._inflect.number_to_words(num // 100) + " hundred "
else:
return (
" "
+ self._inflect.number_to_words(
num, andword="", zero="oh", group=2
).replace(", ", " ")
+ " "
)
else:
return " " + self._inflect.number_to_words(num, andword="") + " "
def normalize_numbers(self, text):
text = re.sub(self._comma_number_re, self._remove_commas, text)
text = re.sub(self._pounds_re, r"\1 pounds", text)
text = re.sub(self._dollars_re, self._expand_dollars, text)
text = re.sub(self._fraction_re, self._expand_fraction, text)
text = re.sub(self._decimal_number_re, self._expand_decimal_point, text)
text = re.sub(self._percent_number_re, self._expand_percent, text)
text = re.sub(self._ordinal_re, self._expand_ordinal, text)
text = re.sub(self._number_re, self._expand_number, text)
return text
def expand_abbreviations(self, text):
for regex, replacement in self._abbreviations:
text = re.sub(regex, replacement, text)
return text
class ChineseTextNormalizer(TextNormalizer):
"""
A class to handle preprocessing of Chinese text including normalization.
"""
def normalize(self, text: str) -> str:
"""Normalize text."""
# Convert numbers to Chinese
text = cn2an.transform(text, "an2cn")
return text
|