File size: 19,450 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
# Copyright 2021-2025 Xiaomi Corporation (authors: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import os
import re
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import torch
import torch.nn as nn
from lhotse.dataset.sampling.base import CutSampler
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from zipvoice.utils.common import AttributeDict
# use duck typing for LRScheduler since we have different possibilities, see
# our class LRScheduler.
LRSchedulerType = object
def save_checkpoint(
filename: Path,
model: Union[nn.Module, DDP],
model_avg: Optional[nn.Module] = None,
model_ema: Optional[nn.Module] = None,
params: Optional[Dict[str, Any]] = None,
optimizer: Optional[Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
scaler: Optional[GradScaler] = None,
sampler: Optional[CutSampler] = None,
rank: int = 0,
) -> None:
"""Save training information to a file.
Args:
filename:
The checkpoint filename.
model:
The model to be saved. We only save its `state_dict()`.
model_avg:
The stored model averaged from the start of training.
model_ema:
The EMA version of model.
params:
User defined parameters, e.g., epoch, loss.
optimizer:
The optimizer to be saved. We only save its `state_dict()`.
scheduler:
The scheduler to be saved. We only save its `state_dict()`.
scalar:
The GradScaler to be saved. We only save its `state_dict()`.
sampler:
The sampler used in the labeled training dataset. We only
save its `state_dict()`.
rank:
Used in DDP. We save checkpoint only for the node whose
rank is 0.
Returns:
Return None.
"""
if rank != 0:
return
logging.info(f"Saving checkpoint to {filename}")
if isinstance(model, DDP):
model = model.module
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict() if optimizer is not None else None,
"scheduler": scheduler.state_dict() if scheduler is not None else None,
"grad_scaler": scaler.state_dict() if scaler is not None else None,
"sampler": sampler.state_dict() if sampler is not None else None,
}
if model_avg is not None:
checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict()
if model_ema is not None:
checkpoint["model_ema"] = model_ema.to(torch.float32).state_dict()
if params:
for k, v in params.items():
assert k not in checkpoint
checkpoint[k] = v
torch.save(checkpoint, filename)
def load_checkpoint(
filename: Path,
model: Optional[nn.Module] = None,
model_avg: Optional[nn.Module] = None,
model_ema: Optional[nn.Module] = None,
strict: bool = False,
) -> Dict[str, Any]:
logging.info(f"Loading checkpoint from {filename}")
checkpoint = torch.load(filename, map_location="cpu", weights_only=False)
if model is not None:
if next(iter(checkpoint["model"])).startswith("module."):
logging.info("Loading checkpoint saved by DDP")
dst_state_dict = model.state_dict()
src_state_dict = checkpoint["model"]
for key in dst_state_dict.keys():
src_key = "{}.{}".format("module", key)
dst_state_dict[key] = src_state_dict.pop(src_key)
assert len(src_state_dict) == 0
model.load_state_dict(dst_state_dict, strict=strict)
else:
logging.info("Loading checkpoint")
model.load_state_dict(checkpoint["model"], strict=strict)
checkpoint.pop("model")
if model_avg is not None and "model_avg" in checkpoint:
logging.info("Loading averaged model")
model_avg.load_state_dict(checkpoint["model_avg"], strict=strict)
checkpoint.pop("model_avg")
if model_ema is not None and "model_ema" in checkpoint:
logging.info("Loading ema model")
model_ema.load_state_dict(checkpoint["model_ema"], strict=strict)
checkpoint.pop("model_ema")
return checkpoint
def load_checkpoint_extend_vocab_size(
filename: Path, extend_size: int, model: nn.Module, strict: bool = True
) -> Dict[str, Any]:
logging.info(f"Loading checkpoint from {filename}")
checkpoint = torch.load(filename, map_location="cpu", weights_only=False)
if model is not None:
if next(iter(checkpoint["model"])).startswith("module."):
logging.info("Loading checkpoint saved by DDP")
dst_state_dict = model.state_dict()
src_state_dict = checkpoint["model"]
for key in dst_state_dict.keys():
src_key = "{}.{}".format("module", key)
dst_state_dict[key] = src_state_dict.pop(src_key)
assert len(src_state_dict) == 0
else:
logging.info("Loading checkpoint")
dst_state_dict = checkpoint["model"]
dst_state_dict["spk_embed.weight"] = model.state_dict()["spk_embed.weight"]
embed_weight = model.state_dict()["embed.weight"]
embed_weight[:-extend_size, :] = dst_state_dict["embed.weight"]
dst_state_dict["embed.weight"] = embed_weight
model.load_state_dict(dst_state_dict, strict=strict)
def load_checkpoint_copy_proj_three_channel_alter(
filename: Path,
in_proj_key: str,
out_proj_key: str,
dim: int,
model: nn.Module,
) -> Dict[str, Any]:
logging.info(f"Loading checkpoint from {filename}")
checkpoint = torch.load(filename, map_location="cpu", weights_only=False)
if model is not None:
if next(iter(checkpoint["model"])).startswith("module."):
logging.info("Loading checkpoint saved by DDP")
dst_state_dict = dict()
src_state_dict = checkpoint["model"]
for key in src_state_dict.keys():
dst_state_dict[key.lstrip("module.")] = src_state_dict.pop(key)
assert len(src_state_dict) == 0
else:
logging.info("Loading checkpoint")
dst_state_dict = checkpoint["model"]
keys = list(dst_state_dict.keys())
for key in keys:
if in_proj_key in key:
if "weight" in key:
weight = dst_state_dict.pop(key)
dst_state_dict[key.replace("weight", "0.weight")] = torch.cat(
[
weight[:, :dim] / 2,
weight[:, :dim] / 2,
weight[:, dim : dim * 2],
weight[:, dim * 2 :] / 2,
weight[:, dim * 2 :] / 2,
],
dim=-1,
)
dst_state_dict[key.replace("weight", "1.weight")] = weight
if "bias" in key:
bias = dst_state_dict.pop(key)
dst_state_dict[key.replace("bias", "0.bias")] = bias
dst_state_dict[key.replace("bias", "1.bias")] = bias
if out_proj_key in key:
if "weight" in key:
weight = dst_state_dict.pop(key)
dst_state_dict[key.replace("weight", "0.weight")] = torch.cat(
[weight, weight], dim=0
)
dst_state_dict[key.replace("weight", "1.weight")] = weight
elif "bias" in key:
bias = dst_state_dict.pop(key)
dst_state_dict[key.replace("bias", "0.bias")] = torch.cat(
[bias, bias], dim=0
)
dst_state_dict[key.replace("bias", "1.bias")] = bias
model.load_state_dict(dst_state_dict, strict=True)
def find_checkpoints(out_dir: Path, iteration: int = 0) -> List[str]:
"""Find all available checkpoints in a directory.
The checkpoint filenames have the form: `checkpoint-xxx.pt`
where xxx is a numerical value.
Assume you have the following checkpoints in the folder `foo`:
- checkpoint-1.pt
- checkpoint-20.pt
- checkpoint-300.pt
- checkpoint-4000.pt
Case 1 (Return all checkpoints)::
find_checkpoints(out_dir='foo')
Case 2 (Return checkpoints newer than checkpoint-20.pt, i.e.,
checkpoint-4000.pt, checkpoint-300.pt, and checkpoint-20.pt)
find_checkpoints(out_dir='foo', iteration=20)
Case 3 (Return checkpoints older than checkpoint-20.pt, i.e.,
checkpoint-20.pt, checkpoint-1.pt)::
find_checkpoints(out_dir='foo', iteration=-20)
Args:
out_dir:
The directory where to search for checkpoints.
iteration:
If it is 0, return all available checkpoints.
If it is positive, return the checkpoints whose iteration number is
greater than or equal to `iteration`.
If it is negative, return the checkpoints whose iteration number is
less than or equal to `-iteration`.
Returns:
Return a list of checkpoint filenames, sorted in descending
order by the numerical value in the filename.
"""
checkpoints = list(glob.glob(f"{out_dir}/checkpoint-[0-9]*.pt"))
pattern = re.compile(r"checkpoint-([0-9]+).pt")
iter_checkpoints = []
for c in checkpoints:
result = pattern.search(c)
if not result:
logging.warn(f"Invalid checkpoint filename {c}")
continue
iter_checkpoints.append((int(result.group(1)), c))
# iter_checkpoints is a list of tuples. Each tuple contains
# two elements: (iteration_number, checkpoint-iteration_number.pt)
iter_checkpoints = sorted(iter_checkpoints, reverse=True, key=lambda x: x[0])
if iteration >= 0:
ans = [ic[1] for ic in iter_checkpoints if ic[0] >= iteration]
else:
ans = [ic[1] for ic in iter_checkpoints if ic[0] <= -iteration]
return ans
def average_checkpoints_with_averaged_model(
filename_start: str,
filename_end: str,
device: torch.device = torch.device("cpu"),
) -> Dict[str, torch.Tensor]:
"""Average model parameters over the range with given
start model (excluded) and end model.
Let start = batch_idx_train of model-start;
end = batch_idx_train of model-end;
interval = end - start.
Then the average model over range from start (excluded) to end is
(1) avg = (model_end * end - model_start * start) / interval.
It can be written as
(2) avg = model_end * weight_end + model_start * weight_start,
where weight_end = end / interval,
weight_start = -start / interval = 1 - weight_end.
Since the terms `weight_end` and `weight_start` would be large
if the model has been trained for lots of batches, which would cause
overflow when multiplying the model parameters.
To avoid this, we rewrite (2) as:
(3) avg = (model_end + model_start * (weight_start / weight_end))
* weight_end
The model index could be epoch number or iteration number.
Args:
filename_start:
Checkpoint filename of the start model. We assume it
is saved by :func:`save_checkpoint`.
filename_end:
Checkpoint filename of the end model. We assume it
is saved by :func:`save_checkpoint`.
device:
Move checkpoints to this device before averaging.
"""
state_dict_start = torch.load(
filename_start, map_location=device, weights_only=False
)
state_dict_end = torch.load(filename_end, map_location=device, weights_only=False)
average_period = state_dict_start["average_period"]
batch_idx_train_start = state_dict_start["batch_idx_train"]
batch_idx_train_start = (batch_idx_train_start // average_period) * average_period
batch_idx_train_end = state_dict_end["batch_idx_train"]
batch_idx_train_end = (batch_idx_train_end // average_period) * average_period
interval = batch_idx_train_end - batch_idx_train_start
assert interval > 0, interval
weight_end = batch_idx_train_end / interval
weight_start = 1 - weight_end
model_end = state_dict_end["model_avg"]
model_start = state_dict_start["model_avg"]
avg = model_end
# scale the weight to avoid overflow
average_state_dict(
state_dict_1=avg,
state_dict_2=model_start,
weight_1=1.0,
weight_2=weight_start / weight_end,
scaling_factor=weight_end,
)
return avg
def remove_checkpoints(
out_dir: Path,
topk: int,
rank: int = 0,
):
"""Remove checkpoints from the given directory.
We assume that checkpoint filename has the form `checkpoint-xxx.pt`
where xxx is a number, representing the number of processed batches
when saving that checkpoint. We sort checkpoints by filename and keep
only the `topk` checkpoints with the highest `xxx`.
Args:
out_dir:
The directory containing checkpoints to be removed.
topk:
Number of checkpoints to keep.
rank:
If using DDP for training, it is the rank of the current node.
Use 0 if no DDP is used for training.
"""
assert topk >= 1, topk
if rank != 0:
return
checkpoints = find_checkpoints(out_dir)
if len(checkpoints) == 0:
logging.warn(f"No checkpoints found in {out_dir}")
return
if len(checkpoints) <= topk:
return
to_remove = checkpoints[topk:]
for c in to_remove:
os.remove(c)
def resume_checkpoint(
params: AttributeDict,
model: nn.Module,
model_avg: nn.Module,
model_ema: Optional[nn.Module] = None,
) -> Optional[Dict[str, Any]]:
"""Load checkpoint from file.
If params.start_epoch is larger than 1, it will load the checkpoint from
`params.start_epoch - 1`.
Apart from loading state dict for `model` and `optimizer` it also updates
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
and `best_valid_loss` in `params`.
Args:
params:
The return value of :func:`get_params`.
model:
The training model.
Returns:
Return a dict containing previously saved training info.
"""
filename = params.exp_dir / f"epoch-{params.start_epoch - 1}.pt"
assert filename.is_file(), f"{filename} does not exist!"
saved_params = load_checkpoint(
filename,
model=model,
model_avg=model_avg,
model_ema=model_ema,
strict=True,
)
if params.start_epoch > 1:
keys = [
"best_train_epoch",
"best_valid_epoch",
"batch_idx_train",
"best_train_loss",
"best_valid_loss",
]
for k in keys:
params[k] = saved_params[k]
return saved_params
def average_state_dict(
state_dict_1: Dict[str, torch.Tensor],
state_dict_2: Dict[str, torch.Tensor],
weight_1: float,
weight_2: float,
scaling_factor: float = 1.0,
) -> Dict[str, torch.Tensor]:
"""Average two state_dict with given weights:
state_dict_1 = (state_dict_1 * weight_1 + state_dict_2 * weight_2)
* scaling_factor
It is an in-place operation on state_dict_1 itself.
"""
# Identify shared parameters. Two parameters are said to be shared
# if they have the same data_ptr
uniqued: Dict[int, str] = dict()
for k, v in state_dict_1.items():
v_data_ptr = v.data_ptr()
if v_data_ptr in uniqued:
continue
uniqued[v_data_ptr] = k
uniqued_names = list(uniqued.values())
for k in uniqued_names:
v = state_dict_1[k]
if torch.is_floating_point(v):
v *= weight_1
v += state_dict_2[k].to(device=state_dict_1[k].device) * weight_2
v *= scaling_factor
def update_averaged_model(
params: Dict[str, torch.Tensor],
model_cur: Union[nn.Module, DDP],
model_avg: nn.Module,
) -> None:
"""Update the averaged model:
model_avg = model_cur * (average_period / batch_idx_train)
+ model_avg * ((batch_idx_train - average_period) / batch_idx_train)
Args:
params:
User defined parameters, e.g., epoch, loss.
model_cur:
The current model.
model_avg:
The averaged model to be updated.
"""
weight_cur = params.average_period / params.batch_idx_train
weight_avg = 1 - weight_cur
if isinstance(model_cur, DDP):
model_cur = model_cur.module
cur = model_cur.state_dict()
avg = model_avg.state_dict()
average_state_dict(
state_dict_1=avg,
state_dict_2=cur,
weight_1=weight_avg,
weight_2=weight_cur,
)
def save_checkpoint_with_global_batch_idx(
out_dir: Path,
global_batch_idx: int,
model: Union[nn.Module, DDP],
model_avg: Optional[nn.Module] = None,
params: Optional[Dict[str, Any]] = None,
optimizer: Optional[Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
scaler: Optional[GradScaler] = None,
sampler: Optional[CutSampler] = None,
rank: int = 0,
):
"""Save training info after processing given number of batches.
Args:
out_dir:
The directory to save the checkpoint.
global_batch_idx:
The number of batches processed so far from the very start of the
training. The saved checkpoint will have the following filename:
f'out_dir / checkpoint-{global_batch_idx}.pt'
model:
The neural network model whose `state_dict` will be saved in the
checkpoint.
model_avg:
The stored model averaged from the start of training.
params:
A dict of training configurations to be saved.
optimizer:
The optimizer used in the training. Its `state_dict` will be saved.
scheduler:
The learning rate scheduler used in the training. Its `state_dict` will
be saved.
scaler:
The scaler used for mix precision training. Its `state_dict` will
be saved.
sampler:
The sampler used in the training dataset.
rank:
The rank ID used in DDP training of the current node. Set it to 0
if DDP is not used.
"""
out_dir = Path(out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
filename = out_dir / f"checkpoint-{global_batch_idx}.pt"
save_checkpoint(
filename=filename,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
scaler=scaler,
sampler=sampler,
rank=rank,
)
|