File size: 19,242 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import argparse
import collections
import json
import logging
import os
import socket
import subprocess
import sys
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union

import torch
from torch import distributed as dist
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter

Pathlike = Union[str, Path]


class AttributeDict(dict):
    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError(f"No such attribute '{key}'")

    def __setattr__(self, key, value):
        self[key] = value

    def __delattr__(self, key):
        if key in self:
            del self[key]
            return
        raise AttributeError(f"No such attribute '{key}'")

    def __str__(self, indent: int = 2):
        tmp = {}
        for k, v in self.items():
            # PosixPath is ont JSON serializable
            if isinstance(v, (Path, torch.device, torch.dtype)):
                v = str(v)
            tmp[k] = v
        return json.dumps(tmp, indent=indent, sort_keys=True)


class MetricsTracker(collections.defaultdict):
    def __init__(self):
        # Passing the type 'int' to the base-class constructor
        # makes undefined items default to int() which is zero.
        # This class will play a role as metrics tracker.
        # It can record many metrics, including but not limited to loss.
        super(MetricsTracker, self).__init__(int)

    def __add__(self, other: "MetricsTracker") -> "MetricsTracker":
        ans = MetricsTracker()
        for k, v in self.items():
            ans[k] = v
        for k, v in other.items():
            ans[k] = ans[k] + v
        return ans

    def __mul__(self, alpha: float) -> "MetricsTracker":
        ans = MetricsTracker()
        for k, v in self.items():
            ans[k] = v * alpha
        return ans

    def __str__(self) -> str:
        ans_frames = ""
        ans_utterances = ""
        for k, v in self.norm_items():
            norm_value = "%.4g" % v
            if "utt_" not in k:
                ans_frames += str(k) + "=" + str(norm_value) + ", "
            else:
                ans_utterances += str(k) + "=" + str(norm_value)
                if k == "utt_duration":
                    ans_utterances += " frames, "
                elif k == "utt_pad_proportion":
                    ans_utterances += ", "
                else:
                    raise ValueError(f"Unexpected key: {k}")
        frames = "%.2f" % self["frames"]
        ans_frames += "over " + str(frames) + " frames. "
        if ans_utterances != "":
            utterances = "%.2f" % self["utterances"]
            ans_utterances += "over " + str(utterances) + " utterances."

        return ans_frames + ans_utterances

    def norm_items(self) -> List[Tuple[str, float]]:
        """
        Returns a list of pairs, like:
          [('ctc_loss', 0.1), ('att_loss', 0.07)]
        """
        num_frames = self["frames"] if "frames" in self else 1
        num_utterances = self["utterances"] if "utterances" in self else 1
        ans = []
        for k, v in self.items():
            if k == "frames" or k == "utterances":
                continue
            norm_value = (
                float(v) / num_frames if "utt_" not in k else float(v) / num_utterances
            )
            ans.append((k, norm_value))
        return ans

    def reduce(self, device):
        """
        Reduce using torch.distributed, which I believe ensures that
        all processes get the total.
        """
        keys = sorted(self.keys())
        s = torch.tensor([float(self[k]) for k in keys], device=device)
        dist.all_reduce(s, op=dist.ReduceOp.SUM)
        for k, v in zip(keys, s.cpu().tolist()):
            self[k] = v

    def write_summary(
        self,
        tb_writer: SummaryWriter,
        prefix: str,
        batch_idx: int,
    ) -> None:
        """Add logging information to a TensorBoard writer.

        Args:
            tb_writer: a TensorBoard writer
            prefix: a prefix for the name of the loss, e.g. "train/valid_",
                or "train/current_"
            batch_idx: The current batch index, used as the x-axis of the plot.
        """
        for k, v in self.norm_items():
            tb_writer.add_scalar(prefix + k, v, batch_idx)


def setup_dist(
    rank=None,
    world_size=None,
    master_port=None,
    use_ddp_launch=False,
    master_addr=None,
):
    """
    rank and world_size are used only if use_ddp_launch is False.
    """
    if "MASTER_ADDR" not in os.environ:
        os.environ["MASTER_ADDR"] = (
            "localhost" if master_addr is None else str(master_addr)
        )

    if "MASTER_PORT" not in os.environ:
        os.environ["MASTER_PORT"] = "12354" if master_port is None else str(master_port)

    if use_ddp_launch is False:
        dist.init_process_group("nccl", rank=rank, world_size=world_size)
        torch.cuda.set_device(rank)
    else:
        dist.init_process_group("nccl")


def cleanup_dist():
    dist.destroy_process_group()


def prepare_input(
    params: AttributeDict,
    batch: dict,
    device: torch.device,
    return_tokens: bool = True,
    return_feature: bool = True,
    return_audio: bool = False,
):
    """
    Parse the features and targets of the current batch.
    Args:
      params:
        It is returned by :func:`get_params`.
      batch:
        It is the return value from iterating
        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
        for the format of the `batch`.
      device:
        The device of Tensor.
    """
    return_list = []

    if return_tokens:
        return_list += [batch["tokens"]]

    if return_feature:
        features = batch["features"].to(device)
        features_lens = batch["features_lens"].to(device)
        return_list += [features * params.feat_scale, features_lens]

    if return_audio:
        return_list += [batch["audio"], batch["audio_lens"]]

    return return_list


def prepare_avg_tokens_durations(features_lens, tokens_lens):
    tokens_durations = []
    for i in range(len(features_lens)):
        utt_duration = features_lens[i]
        avg_token_duration = utt_duration // tokens_lens[i]
        tokens_durations.append([avg_token_duration] * tokens_lens[i])
    return tokens_durations


def pad_labels(y: List[List[int]], pad_id: int, device: torch.device):
    """
    Pad the transcripts to the same length with zeros.

    Args:
      y: the transcripts, which is a list of a list

    Returns:
      Return a Tensor of padded transcripts.
    """
    y = [token_ids + [pad_id] for token_ids in y]
    length = max([len(token_ids) for token_ids in y])
    y = [token_ids + [pad_id] * (length - len(token_ids)) for token_ids in y]
    return torch.tensor(y, dtype=torch.int64, device=device)


def get_tokens_index(durations: List[List[int]], num_frames: int) -> torch.Tensor:
    """
    Gets position in the transcript for each frame, i.e. the position
    in the symbol-sequence to look up.

    Args:
      durations:
        Duration of each token in transcripts.
      num_frames:
        The maximum frame length of the current batch.

    Returns:
      Return a Tensor of shape (batch_size, num_frames)
    """
    durations = [x + [num_frames - sum(x)] for x in durations]
    batch_size = len(durations)
    ans = torch.zeros(batch_size, num_frames, dtype=torch.int64)
    for b in range(batch_size):
        this_dur = durations[b]
        cur_frame = 0
        for i, d in enumerate(this_dur):
            ans[b, cur_frame : cur_frame + d] = i
            cur_frame += d
        assert cur_frame == num_frames, (cur_frame, num_frames)
    return ans


def to_int_tuple(s: Union[str, int]):
    if isinstance(s, int):
        return (s,)
    return tuple(map(int, s.split(",")))


def get_adjusted_batch_count(params: AttributeDict) -> float:
    # returns the number of batches we would have used so far if we had used the
    # reference duration.  This is for purposes of set_batch_count().
    return (
        params.batch_idx_train
        * (params.max_duration * params.world_size)
        / params.ref_duration
    )


def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
    if isinstance(model, DDP):
        # get underlying nn.Module
        model = model.module
    for name, module in model.named_modules():
        if hasattr(module, "batch_count"):
            module.batch_count = batch_count
        if hasattr(module, "name"):
            module.name = name


def condition_time_mask(
    features_lens: torch.Tensor,
    mask_percent: Tuple[float, float],
    max_len: int = 0,
) -> torch.Tensor:
    """
    Apply Time masking.
    Args:
        features_lens:
            input tensor of shape ``(B)``
        mask_size:
            the width size for masking.
        max_len:
            the maximum length of the mask.
    Returns:
        Return a 2-D bool tensor (B, T), where masked positions
        are filled with `True` and non-masked positions are
        filled with `False`.
    """
    mask_size = (
        torch.zeros_like(features_lens, dtype=torch.float32).uniform_(*mask_percent)
        * features_lens
    ).to(torch.int64)
    mask_starts = (
        torch.rand_like(mask_size, dtype=torch.float32) * (features_lens - mask_size)
    ).to(torch.int64)
    mask_ends = mask_starts + mask_size
    max_len = max(max_len, features_lens.max())
    seq_range = torch.arange(0, max_len, device=features_lens.device)
    mask = (seq_range[None, :] >= mask_starts[:, None]) & (
        seq_range[None, :] < mask_ends[:, None]
    )
    return mask


def condition_time_mask_suffix(
    features_lens: torch.Tensor,
    mask_percent: Tuple[float, float],
    max_len: int = 0,
) -> torch.Tensor:
    """
    Apply Time masking, mask from the end time index.
    Args:
        features_lens:
            input tensor of shape ``(B)``
        mask_size:
            the width size for masking.
        max_len:
            the maximum length of the mask.
    Returns:
        Return a 2-D bool tensor (B, T), where masked positions
        are filled with `True` and non-masked positions are
        filled with `False`.
    """
    mask_size = (
        torch.zeros_like(features_lens, dtype=torch.float32).uniform_(*mask_percent)
        * features_lens
    ).to(torch.int64)
    mask_starts = (
        torch.ones_like(mask_size, dtype=torch.float32) * (features_lens - mask_size)
    ).to(torch.int64)
    mask_ends = mask_starts + mask_size
    max_len = max(max_len, features_lens.max())
    seq_range = torch.arange(0, max_len, device=features_lens.device)
    mask = (seq_range[None, :] >= mask_starts[:, None]) & (
        seq_range[None, :] < mask_ends[:, None]
    )
    return mask


def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
    """
    Args:
      lengths:
        A 1-D tensor containing sentence lengths.
      max_len:
        The length of masks.
    Returns:
      Return a 2-D bool tensor, where masked positions
      are filled with `True` and non-masked positions are
      filled with `False`.

    >>> lengths = torch.tensor([1, 3, 2, 5])
    >>> make_pad_mask(lengths)
    tensor([[False,  True,  True,  True,  True],
            [False, False, False,  True,  True],
            [False, False,  True,  True,  True],
            [False, False, False, False, False]])
    """
    assert lengths.ndim == 1, lengths.ndim
    max_len = max(max_len, lengths.max())
    n = lengths.size(0)
    seq_range = torch.arange(0, max_len, device=lengths.device)
    expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)

    return expaned_lengths >= lengths.unsqueeze(-1)


def str2bool(v):
    """Used in argparse.ArgumentParser.add_argument to indicate
    that a type is a bool type and user can enter

        - yes, true, t, y, 1, to represent True
        - no, false, f, n, 0, to represent False

    See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse  # noqa
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def setup_logger(
    log_filename: Pathlike,
    log_level: str = "info",
    use_console: bool = True,
) -> None:
    """Setup log level.

    Args:
      log_filename:
        The filename to save the log.
      log_level:
        The log level to use, e.g., "debug", "info", "warning", "error",
        "critical"
      use_console:
        True to also print logs to console.
    """
    now = datetime.now()
    date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
    if dist.is_available() and dist.is_initialized():
        world_size = dist.get_world_size()
        rank = dist.get_rank()
        formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s"  # noqa
        log_filename = f"{log_filename}-{date_time}-{rank}"
    else:
        formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
        log_filename = f"{log_filename}-{date_time}"

    os.makedirs(os.path.dirname(log_filename), exist_ok=True)

    level = logging.ERROR
    if log_level == "debug":
        level = logging.DEBUG
    elif log_level == "info":
        level = logging.INFO
    elif log_level == "warning":
        level = logging.WARNING
    elif log_level == "critical":
        level = logging.CRITICAL

    logging.basicConfig(
        filename=log_filename,
        format=formatter,
        level=level,
        filemode="w",
        force=True,
    )
    if use_console:
        console = logging.StreamHandler()
        console.setLevel(level)
        console.setFormatter(logging.Formatter(formatter))
        logging.getLogger("").addHandler(console)


def get_git_sha1():
    try:
        git_commit = (
            subprocess.run(
                ["git", "rev-parse", "--short", "HEAD"],
                check=True,
                stdout=subprocess.PIPE,
            )
            .stdout.decode()
            .rstrip("\n")
            .strip()
        )
        dirty_commit = (
            len(
                subprocess.run(
                    ["git", "diff", "--shortstat"],
                    check=True,
                    stdout=subprocess.PIPE,
                )
                .stdout.decode()
                .rstrip("\n")
                .strip()
            )
            > 0
        )
        git_commit = git_commit + "-dirty" if dirty_commit else git_commit + "-clean"
    except:  # noqa
        return None

    return git_commit


def get_git_date():
    try:
        git_date = (
            subprocess.run(
                ["git", "log", "-1", "--format=%ad", "--date=local"],
                check=True,
                stdout=subprocess.PIPE,
            )
            .stdout.decode()
            .rstrip("\n")
            .strip()
        )
    except:  # noqa
        return None

    return git_date


def get_git_branch_name():
    try:
        git_date = (
            subprocess.run(
                ["git", "rev-parse", "--abbrev-ref", "HEAD"],
                check=True,
                stdout=subprocess.PIPE,
            )
            .stdout.decode()
            .rstrip("\n")
            .strip()
        )
    except:  # noqa
        return None

    return git_date


def get_env_info() -> Dict[str, Any]:
    """Get the environment information."""
    return {
        "torch-version": str(torch.__version__),
        "torch-cuda-available": torch.cuda.is_available(),
        "torch-cuda-version": torch.version.cuda,
        "python-version": sys.version[:4],
        "zipvoice-git-branch": get_git_branch_name(),
        "zipvoice-git-sha1": get_git_sha1(),
        "zipvoice-git-date": get_git_date(),
        "zipvoice-path": str(Path(__file__).resolve().parent.parent),
        "hostname": socket.gethostname(),
        "IP address": socket.gethostbyname(socket.gethostname()),
    }


def get_parameter_groups_with_lrs(
    model: nn.Module,
    lr: float,
    include_names: bool = False,
    freeze_modules: List[str] = [],
) -> List[dict]:
    """
    This is for use with the ScaledAdam optimizers (more recent versions that accept
    lists of named-parameters; we can, if needed, create a version without the names).

    It provides a way to specify learning-rate scales inside the module, so that if
    any nn.Module in the hierarchy has a floating-point parameter 'lr_scale', it will
    scale the LR of any parameters inside that module or its submodules.  Note: you
    can set module parameters outside the __init__ function, e.g.:
      >>> a = nn.Linear(10, 10)
      >>> a.lr_scale = 0.5

    Returns: a list of dicts, of the following form:
      if include_names == False:
        [  { 'params': [ tensor1, tensor2, ... ], 'lr': 0.01 },
           { 'params': [ tensor3, tensor4, ... ], 'lr': 0.005 },
         ...   ]
      if include_names == true:
        [  { 'named_params': [ (name1, tensor1, (name2, tensor2), ... ], 'lr': 0.01 },
           { 'named_params': [ (name3, tensor3), (name4, tensor4), ... ], 'lr': 0.005 },
         ...   ]

    """
    # flat_lr_scale just contains the lr_scale explicitly specified
    # for each prefix of the name, e.g. 'encoder.layers.3', these need
    # to be multiplied for all prefix of the name of any given parameter.
    flat_lr_scale = defaultdict(lambda: 1.0)
    names = []
    for name, m in model.named_modules():
        names.append(name)
        if hasattr(m, "lr_scale"):
            flat_lr_scale[name] = m.lr_scale

    # lr_to_parames is a dict from learning rate (floating point) to: if
    # include_names == true, a list of (name, parameter) for that learning rate;
    # otherwise a list of parameters for that learning rate.
    lr_to_params = defaultdict(list)

    for name, parameter in model.named_parameters():
        split_name = name.split(".")
        # caution: as a special case, if the name is '', split_name will be [ '' ].
        prefix = split_name[0]
        if prefix == "module":  # DDP
            module_name = split_name[1]
            if module_name in freeze_modules:
                logging.info(f"Remove {name} from parameters")
                continue
        else:
            if prefix in freeze_modules:
                logging.info(f"Remove {name} from parameters")
                continue
        cur_lr = lr * flat_lr_scale[prefix]
        if prefix != "":
            cur_lr *= flat_lr_scale[""]
        for part in split_name[1:]:
            prefix = ".".join([prefix, part])
            cur_lr *= flat_lr_scale[prefix]
        lr_to_params[cur_lr].append((name, parameter) if include_names else parameter)

    if include_names:
        return [{"named_params": pairs, "lr": lr} for lr, pairs in lr_to_params.items()]
    else:
        return [{"params": params, "lr": lr} for lr, params in lr_to_params.items()]