File size: 28,498 Bytes
6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
# Copyright 2022-2024 Xiaomi Corp. (authors: Daniel Povey
# Zengwei Yao
# Mingshuang Luo,
# Zengrui Jin,)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import Tensor, nn
class TensorDiagnosticOptions(object):
"""Options object for tensor diagnostics:
Args:
max_eig_dim:
The maximum dimension for which we print out eigenvalues
(limited for speed reasons).
"""
def __init__(self, max_eig_dim: int = 512):
self.max_eig_dim = max_eig_dim
def dim_is_summarized(self, size: int):
return size > 10 and size != 31
def get_tensor_stats(
x: Tensor,
dim: int,
stats_type: str,
) -> Tuple[Tensor, int]:
"""
Returns the specified transformation of the Tensor (either x or x.abs()
or (x > 0), summed over all but the index `dim`.
Args:
x:
Tensor, tensor to be analyzed
dim:
Dimension with 0 <= dim < x.ndim
stats_type:
The stats_type includes several types:
"abs" -> take abs() before summing
"positive" -> take (x > 0) before summing
"rms" -> square before summing, we'll take sqrt later
"value" -> just sum x itself
"max", "min" -> take the maximum or minimum [over all other dims but dim]
instead of summing
"rms-sort" -> this is a bit different than the others, it's based on computing
the rms over the specified dim and returning percentiles of the result
(11 of them).
Returns:
stats: a Tensor of shape (x.shape[dim],).
count: an integer saying how many items were counted in each element
of stats.
"""
if stats_type == "rms-sort":
rms = (x**2).mean(dim=dim).sqrt()
rms = rms.flatten()
rms = rms.sort()[0]
rms = rms[(torch.arange(11) * rms.numel() // 10).clamp(max=rms.numel() - 1)]
count = 1.0
return rms, count
count = x.numel() // x.shape[dim]
if stats_type == "eigs":
x = x.transpose(dim, -1)
x = x.reshape(-1, x.shape[-1])
# shape of returned tensor: (s, s),
# where s is size of dimension `dim` of original x.
return torch.matmul(x.transpose(0, 1), x), count
elif stats_type == "abs":
x = x.abs()
elif stats_type == "rms":
x = x**2
elif stats_type == "positive":
x = (x > 0).to(dtype=torch.float)
else:
assert stats_type in ["value", "max", "min"]
sum_dims = [d for d in range(x.ndim) if d != dim]
if len(sum_dims) > 0:
if stats_type == "max":
for dim in reversed(sum_dims):
x = torch.max(x, dim=dim)[0]
elif stats_type == "min":
for dim in reversed(sum_dims):
x = torch.min(x, dim=dim)[0]
else:
x = torch.sum(x, dim=sum_dims)
x = x.flatten().clone()
return x, count
@dataclass
class TensorAndCount:
tensor: Tensor
count: int
class TensorDiagnostic(object):
"""This class is not directly used by the user, it is responsible for
collecting diagnostics for a module or parameter tensor of a torch.nn.Module.
Args:
opts:
Options object.
name:
The name associated with this diagnostics object, will probably be
{module_name}.X where X is "output" or "grad", or {parameter_name}.
Y where Y is param_value or param_grad.
"""
def __init__(self, opts: TensorDiagnosticOptions, name: str):
self.opts = opts
self.name = name
self.class_name = None # will assign in accumulate()
self.stats = None # we'll later assign a list to self.stats.
# It's a list of dicts, indexed by dim (i.e. by the
# axis of the tensor). The dicts, in turn, are
# indexed by `stats-type` which are strings in
# ["abs", "max", "min", "positive", "value", "rms"].
# scalar_stats contains some analysis of the activations and gradients,
self.scalar_stats = None
# the keys into self.stats[dim] are strings, whose values can be
# "abs", "max", "min" ,"value", "positive", "rms", "value".
# The values e.g. self.stats[dim]["rms"] are lists of dataclass TensorAndCount,
# containing a tensor and its associated count (which is the sum of the other
# dims that we aggregated over, e.g. the number of frames and/or batch elements
# and/or channels.
# ... we actually accumulate the Tensors / counts any time we have the same-dim
# tensor, only adding a new element to the list if there was a different dim.
# if the string in the key is "eigs", if we detect a length mismatch we put None
# as the value.
def accumulate(self, x, class_name: Optional[str] = None):
"""
Accumulate tensors.
"""
if class_name is not None:
self.class_name = class_name
if isinstance(x, Tuple):
x = x[0]
if not isinstance(x, Tensor):
return
if x.numel() == 0: # for empty tensor
return
x = x.detach().clone()
if x.ndim == 0:
x = x.unsqueeze(0)
ndim = x.ndim
if self.stats is None:
self.stats = [dict() for _ in range(ndim)]
for dim in range(ndim):
this_dim_stats = self.stats[dim]
if ndim > 1:
# rms-sort is different from the others, it's based on summing over just
# this dim, then sorting and returning the percentiles.
stats_types = [
"abs",
"max",
"min",
"positive",
"value",
"rms",
"rms-sort",
]
if x.shape[dim] <= self.opts.max_eig_dim:
stats_types.append("eigs")
else:
stats_types = ["value", "abs", "max", "min"]
for stats_type in stats_types:
stats, count = get_tensor_stats(x, dim, stats_type)
if stats_type not in this_dim_stats:
this_dim_stats[stats_type] = [] # list of TensorAndCount
done = False
if this_dim_stats[stats_type] is None:
# we can reach here if we detected for stats_type "eigs" that
# where was more than one different size for this dim. Then we
# disable accumulating this stats type, as it uses too much memory.
continue
for s in this_dim_stats[stats_type]:
if s.tensor.shape == stats.shape:
if stats_type == "max":
s.tensor = torch.maximum(s.tensor, stats)
elif stats_type == "min":
s.tensor = torch.minimum(s.tensor, stats)
else:
assert stats_type != "max"
s.tensor += stats
s.count += count
done = True
break
if not done:
if this_dim_stats[stats_type] != [] and stats_type == "eigs":
# >1 size encountered on this dim, e.g. it's a batch or time
# dimension, don't accumulat "eigs" stats type, it uses too much
# memory
this_dim_stats[stats_type] = None
else:
this_dim_stats[stats_type].append(TensorAndCount(stats, count))
def print_diagnostics(self):
"""Print diagnostics for each dimension of the tensor."""
if self.stats is None:
print(f"Warning: the stats of {self.name} is None.")
return
for dim, this_dim_stats in enumerate(self.stats):
if "rms" in this_dim_stats and "value" in this_dim_stats:
# produce "stddev" stats, which is centered RMS.
rms_stats_list = this_dim_stats["rms"]
value_stats_list = this_dim_stats["value"]
if len(rms_stats_list) == len(value_stats_list):
stddev_stats_list = []
for r, v in zip(rms_stats_list, value_stats_list):
stddev_stats_list.append(
# r.count and v.count should be the same, but we don't check
# this.
TensorAndCount(
r.tensor - v.tensor * v.tensor / (v.count + 1.0e-20),
r.count,
)
)
this_dim_stats["stddev"] = stddev_stats_list
for stats_type, stats_list in this_dim_stats.items():
# stats_type could be "rms", "value", "abs", "eigs", "positive", "min"
# or "max". "stats_list" could be a list of TensorAndCount (one list per
# distinct tensor shape of the stats), or None
if stats_list is None:
assert stats_type == "eigs"
continue
def get_count(count):
return 1 if stats_type in ["max", "min"] else count
if len(stats_list) == 1:
stats = stats_list[0].tensor / get_count(stats_list[0].count)
else:
# a dimension that has variable size in different nnet
# forwards, e.g. a time dimension in an ASR model.
stats = torch.cat(
[x.tensor / get_count(x.count) for x in stats_list], dim=0
)
if stats_type == "eigs":
try:
if hasattr(torch, "linalg") and hasattr(torch.linalg, "eigh"):
eigs, _ = torch.linalg.eigh(stats)
else:
eigs, _ = torch.symeig(stats)
stats = eigs.abs().sqrt()
except: # noqa
print("Error getting eigenvalues, trying another method.")
if hasattr(torch, "linalg") and hasattr(torch.linalg, "eig"):
eigs, _ = torch.linalg.eig(stats)
eigs = eigs.abs()
else:
eigs, _ = torch.eig(stats)
eigs = eigs.norm(dim=1)
stats = eigs.sqrt()
# sqrt so it reflects data magnitude, like stddev- not variance
if stats_type in ["rms", "stddev"]:
# we stored the square; after aggregation we need to take sqrt.
stats = stats.sqrt()
# if `summarize` we print percentiles of the stats; else,
# we print out individual elements.
summarize = (len(stats_list) > 1) or self.opts.dim_is_summarized(
stats.numel()
)
if summarize: # usually `summarize` will be true
# print out percentiles.
stats = stats.sort()[0]
num_percentiles = 10
size = stats.numel()
percentiles = []
for i in range(num_percentiles + 1):
index = (i * (size - 1)) // num_percentiles
percentiles.append(stats[index].item())
percentiles = ["%.2g" % x for x in percentiles]
percentiles = " ".join(percentiles)
ans = f"percentiles: [{percentiles}]"
else:
ans = stats.tolist()
ans = ["%.2g" % x for x in ans]
ans = "[" + " ".join(ans) + "]"
if stats_type in ["value", "rms", "stddev", "eigs"]:
# This norm is useful because it is strictly less than the largest
# sqrt(eigenvalue) of the variance, which we print out, and shows,
# speaking in an approximate way, how much of that largest
# eigenvalue can be attributed to the mean of the distribution.
norm = (stats**2).sum().sqrt().item()
ans += f", norm={norm:.2g}"
mean = stats.mean().item()
rms = (stats**2).mean().sqrt().item()
ans += f", mean={mean:.3g}, rms={rms:.3g}"
# OK, "ans" contains the actual stats, e.g.
# ans = "percentiles: \
# [0.43 0.46 0.48 0.49 0.49 0.5 0.51 0.52 0.53 0.54 0.59], \
# mean=0.5, rms=0.5"
sizes = [x.tensor.shape[0] for x in stats_list]
size_str = (
f"{sizes[0]}" if len(sizes) == 1 else f"{min(sizes)}..{max(sizes)}"
)
maybe_class_name = (
f" type={self.class_name}," if self.class_name is not None else ""
)
print(
f"module={self.name},{maybe_class_name} dim={dim}, size={size_str}, "
f"{stats_type} {ans}"
)
class ScalarDiagnostic(object):
"""This class is not directly used by the user, it is responsible for
collecting diagnostics for a single module (subclass of torch.nn.Module) that
represents some kind of nonlinearity, e.g. ReLU, sigmoid, etc.
"""
def __init__(self, opts: TensorDiagnosticOptions, name: str):
self.opts = opts
self.name = name
self.class_name = None # will assign in accumulate()
self.is_forward_pass = True
self.tick_scale = None
self.saved_inputs = []
self.is_ok = True
self.counts = None
self.sum_grad = None
self.sum_gradsq = None
self.sum_abs_grad = None
def accumulate_input(self, x: Tensor, class_name: Optional[str] = None):
"""
Called in forward pass.
"""
if not self.is_forward_pass:
# in case we did a forward pass without a backward pass, for some reason.
self.saved_inputs = []
self.is_forward_pass = True
if class_name is not None:
self.class_name = class_name
if not self.is_ok:
return
limit = 10
if len(self.saved_inputs) > limit:
print(
f"ERROR: forward pass called for this module over {limit} times "
f"with no backward pass. Will not accumulate scalar stats."
)
self.is_ok = False
return
self.saved_inputs.append(x)
def accumulate_output_grad(self, grad: Tensor):
if not self.is_ok:
return
if self.is_forward_pass:
self.is_forward_pass = False
last_shape = (
"n/a" if len(self.saved_inputs) == 0 else self.saved_inputs[-1].shape
)
if len(self.saved_inputs) == 0 or grad.shape != last_shape:
print(
f"ERROR: shape mismatch or no forward activation present when backward "
f"pass called: grad shape ={tuple(grad.shape)}"
f", num-saved-inputs={len(self.saved_inputs)}"
f", shape-of-last-saved-input={last_shape}"
)
self.is_ok = False
return
x = self.saved_inputs.pop()
self.process_input_and_grad(x, grad)
def process_input_and_grad(self, x: Tensor, grad: Tensor):
assert x.shape == grad.shape
x = x.flatten()
grad = grad.flatten()
num_ticks_per_side = 256
if self.tick_scale is None:
x_abs_sorted = x.abs().sort()[0]
# take the 98th percentile as the largest value we count separately.
index = int(x.numel() * 0.98)
self.tick_scale = float(x_abs_sorted[index] / num_ticks_per_side)
# integerize from tick * (-num ticks_per_side .. num_ticks_per_side - 1]
self.counts = torch.zeros(
2 * num_ticks_per_side, dtype=torch.long, device=x.device
)
self.sum_grad = torch.zeros(
2 * num_ticks_per_side, dtype=torch.double, device=x.device
)
# sum_gradsq is for getting error bars.
self.sum_gradsq = torch.zeros(
2 * num_ticks_per_side, dtype=torch.double, device=x.device
)
self.sum_abs_grad = torch.zeros(
2 * num_ticks_per_side, dtype=torch.double, device=x.device
)
# this will round down.
x = (x / self.tick_scale).to(torch.long)
x = x.clamp_(min=-num_ticks_per_side, max=num_ticks_per_side - 1)
x = x + num_ticks_per_side
self.counts.index_add_(dim=0, index=x, source=torch.ones_like(x))
self.sum_grad.index_add_(dim=0, index=x, source=grad.to(torch.double))
self.sum_gradsq.index_add_(
dim=0, index=x, source=(grad * grad).to(torch.double)
)
self.sum_abs_grad.index_add_(dim=0, index=x, source=grad.abs().to(torch.double))
def print_diagnostics(self):
"""Print diagnostics."""
if self.is_ok is False or self.counts is None:
print(f"Warning: no stats accumulated for {self.name}, is_ok={self.is_ok}")
return
counts = self.counts.to("cpu")
sum_grad = self.sum_grad.to(device="cpu", dtype=torch.float32)
sum_gradsq = self.sum_gradsq.to(device="cpu", dtype=torch.float32)
sum_abs_grad = self.sum_abs_grad.to(device="cpu", dtype=torch.float32)
counts_cumsum = counts.cumsum(dim=0)
counts_tot = counts_cumsum[-1]
# subdivide the distribution up into `num_bins` intervals for analysis, for
# greater statistical significance. each bin corresponds to multiple of the
# original 'tick' intervals.
num_bins = 20
# integer division
counts_per_bin = (counts_tot // num_bins) + 1
bin_indexes = counts_cumsum // counts_per_bin
bin_indexes = bin_indexes.clamp(min=0, max=num_bins).to(torch.long)
bin_counts = torch.zeros(num_bins, dtype=torch.long)
bin_counts.index_add_(dim=0, index=bin_indexes, source=counts)
bin_grad = torch.zeros(num_bins)
bin_grad.index_add_(dim=0, index=bin_indexes, source=sum_grad)
bin_gradsq = torch.zeros(num_bins)
bin_gradsq.index_add_(dim=0, index=bin_indexes, source=sum_gradsq)
bin_abs_grad = torch.zeros(num_bins)
bin_abs_grad.index_add_(dim=0, index=bin_indexes, source=sum_abs_grad)
bin_boundary_counts = (
torch.arange(num_bins + 1, dtype=torch.long) * counts_per_bin
)
bin_tick_indexes = torch.searchsorted(counts_cumsum, bin_boundary_counts)
# boundaries are the "x" values between the bins, e.g. corresponding to the
# locations of percentiles of the distribution.
num_ticks_per_side = counts.numel() // 2
bin_boundaries = (bin_tick_indexes - num_ticks_per_side) * self.tick_scale
bin_grad = bin_grad / (bin_counts + 1)
bin_conf_interval = bin_gradsq.sqrt() / (
bin_counts + 1
) # consider this a standard deviation.
# bin_grad / bin_abs_grad will give us a sense for how important in a practical
# sense, the gradients are.
bin_abs_grad = bin_abs_grad / (bin_counts + 1)
bin_rel_grad = bin_grad / (bin_abs_grad + 1.0e-20)
bin_conf = bin_grad / (bin_conf_interval + 1.0e-20)
def tensor_to_str(x: Tensor):
x = ["%.2g" % f for f in x]
x = "[" + " ".join(x) + "]"
return x
maybe_class_name = (
f" type={self.class_name}," if self.class_name is not None else ""
)
print(
f"module={self.name},{maybe_class_name} "
f"bin-boundaries={tensor_to_str(bin_boundaries)}, "
f"rel_grad={tensor_to_str(bin_rel_grad)}, "
f"grad_conf={tensor_to_str(bin_conf)}"
)
class ModelDiagnostic(object):
"""This class stores diagnostics for all tensors in the torch.nn.Module.
Args:
opts:
Options object.
"""
def __init__(self, opts: Optional[TensorDiagnosticOptions] = None):
# In this dictionary, the keys are tensors names and the values
# are corresponding TensorDiagnostic objects.
if opts is None:
self.opts = TensorDiagnosticOptions()
else:
self.opts = opts
self.diagnostics = dict()
def __getitem__(self, name: str):
T = ScalarDiagnostic if name[-7:] == ".scalar" else TensorDiagnostic
if name not in self.diagnostics:
self.diagnostics[name] = T(self.opts, name)
return self.diagnostics[name]
def print_diagnostics(self):
"""Print diagnostics for each tensor."""
for k in sorted(self.diagnostics.keys()):
self.diagnostics[k].print_diagnostics()
def get_class_name(module: nn.Module):
ans = type(module).__name__
# we put the below in try blocks in case anyone is using a different version of
# these modules that might have different member names.
if ans == "Balancer" or ans == "ActivationBalancer":
try:
ans += f"[{float(module.min_positive)},{float(module.max_positive)},"
f"{float(module.min_abs)},{float(module.max_abs)}]"
except:
pass
elif ans == "AbsValuePenalizer":
try:
ans += f"[{module.limit}]"
except:
pass
return ans
def attach_diagnostics(
model: nn.Module, opts: Optional[TensorDiagnosticOptions] = None
) -> ModelDiagnostic:
"""Attach a ModelDiagnostic object to the model by
1) registering forward hook and backward hook on each module, to accumulate
its output tensors and gradient tensors, respectively;
2) registering backward hook on each module parameter, to accumulate its
values and gradients.
Args:
model:
the model to be analyzed.
opts:
Options object.
Returns:
The ModelDiagnostic object attached to the model.
"""
ans = ModelDiagnostic(opts)
for name, module in model.named_modules():
if name == "":
name = "<top-level>"
# Setting model_diagnostic=ans and n=name below, instead of trying to
# capture the variables, ensures that we use the current values.
# (this matters for `name`, since the variable gets overwritten).
# These closures don't really capture by value, only by
# "the final value the variable got in the function" :-(
def forward_hook(_module, _input, _output, _model_diagnostic=ans, _name=name):
if isinstance(_output, tuple) and len(_output) == 1:
_output = _output[0]
if isinstance(_output, Tensor) and _output.dtype in (
torch.float32,
torch.float16,
torch.float64,
):
_model_diagnostic[f"{_name}.output"].accumulate(
_output, class_name=get_class_name(_module)
)
elif isinstance(_output, tuple):
for i, o in enumerate(_output):
if isinstance(o, Tensor) and o.dtype in (
torch.float32,
torch.float16,
torch.float64,
):
_model_diagnostic[f"{_name}.output[{i}]"].accumulate(
o, class_name=get_class_name(_module)
)
def backward_hook(_module, _input, _output, _model_diagnostic=ans, _name=name):
if isinstance(_output, tuple) and len(_output) == 1:
_output = _output[0]
if isinstance(_output, Tensor) and _output.dtype in (
torch.float32,
torch.float16,
torch.float64,
):
_model_diagnostic[f"{_name}.grad"].accumulate(
_output, class_name=get_class_name(_module)
)
elif isinstance(_output, tuple):
for i, o in enumerate(_output):
if isinstance(o, Tensor) and o.dtype in (
torch.float32,
torch.float16,
torch.float64,
):
_model_diagnostic[f"{_name}.grad[{i}]"].accumulate(
o, class_name=get_class_name(_module)
)
module.register_forward_hook(forward_hook)
module.register_backward_hook(backward_hook)
if type(module).__name__ in [
"Sigmoid",
"Tanh",
"ReLU",
"TanSwish",
"Swish",
"DoubleSwish",
"Swoosh",
]:
# For these specific module types, accumulate some additional diagnostics
# that can help us improve the activation function. These require a lot of
# memory, to save the forward activations, so limit this to some select
# classes. Note: this will not work correctly for all model types.
def scalar_forward_hook(
_module, _input, _output, _model_diagnostic=ans, _name=name
):
if isinstance(_input, tuple):
(_input,) = _input
assert isinstance(_input, Tensor)
_model_diagnostic[f"{_name}.scalar"].accumulate_input(
_input, class_name=get_class_name(_module)
)
def scalar_backward_hook(
_module, _input, _output, _model_diagnostic=ans, _name=name
):
if isinstance(_output, tuple):
(_output,) = _output
assert isinstance(_output, Tensor)
_model_diagnostic[f"{_name}.scalar"].accumulate_output_grad(_output)
module.register_forward_hook(scalar_forward_hook)
module.register_backward_hook(scalar_backward_hook)
for name, parameter in model.named_parameters():
def param_backward_hook(
grad, _parameter=parameter, _model_diagnostic=ans, _name=name
):
_model_diagnostic[f"{_name}.param_value"].accumulate(_parameter)
_model_diagnostic[f"{_name}.param_grad"].accumulate(grad)
try:
parameter.register_hook(param_backward_hook)
except:
logging.warning(
f"Warning: could not register backward hook for parameter {name}, "
f"it might not be differentiable."
)
return ans
def _test_tensor_diagnostic():
opts = TensorDiagnosticOptions(512)
diagnostic = TensorDiagnostic(opts, "foo")
for _ in range(10):
diagnostic.accumulate(torch.randn(50, 100) * 10.0)
diagnostic.print_diagnostics()
model = nn.Sequential(nn.Linear(100, 50), nn.ReLU(), nn.Linear(50, 80))
diagnostic = attach_diagnostics(model, opts)
for _ in range(10):
T = random.randint(200, 300)
x = torch.randn(T, 100)
y = model(x)
y.sum().backward()
diagnostic.print_diagnostics()
if __name__ == "__main__":
_test_tensor_diagnostic()
|