File size: 8,505 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright      2022  Xiaomi Corp.        (authors: Daniel Povey)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from typing import List, Optional, Union

import torch
from torch.optim import Optimizer


class LRScheduler(object):
    """
    Base-class for learning rate schedulers where the learning-rate depends on both the
    batch and the epoch.
    """

    def __init__(self, optimizer: Optimizer, verbose: bool = False):
        # Attach optimizer
        if not isinstance(optimizer, Optimizer):
            raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__))
        self.optimizer = optimizer
        self.verbose = verbose

        for group in optimizer.param_groups:
            group.setdefault("base_lr", group["lr"])

        self.base_lrs = [group["base_lr"] for group in optimizer.param_groups]

        self.epoch = 0
        self.batch = 0

    def state_dict(self):
        """Returns the state of the scheduler as a :class:`dict`.

        It contains an entry for every variable in self.__dict__ which
        is not the optimizer.
        """
        return {
            # the user might try to override the base_lr, so don't include this in the
            # state. previously they were included.
            # "base_lrs": self.base_lrs,
            "epoch": self.epoch,
            "batch": self.batch,
        }

    def load_state_dict(self, state_dict):
        """Loads the schedulers state.

        Args:
            state_dict (dict): scheduler state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # the things with base_lrs are a work-around for a previous problem
        # where base_lrs were written with the state dict.
        base_lrs = self.base_lrs
        self.__dict__.update(state_dict)
        self.base_lrs = base_lrs

    def get_last_lr(self) -> List[float]:
        """Return last computed learning rate by current scheduler.
        Will be a list of float."""
        return self._last_lr

    def get_lr(self):
        # Compute list of learning rates from self.epoch and self.batch and
        # self.base_lrs; this must be overloaded by the user.
        # e.g. return [some_formula(self.batch, self.epoch, base_lr)
        # for base_lr in self.base_lrs ]
        raise NotImplementedError

    def step_batch(self, batch: Optional[int] = None) -> None:
        # Step the batch index, or just set it.  If `batch` is specified, it
        # must be the batch index from the start of training, i.e. summed over
        # all epochs.
        # You can call this in any order; if you don't provide 'batch', it should
        # of course be called once per batch.
        if batch is not None:
            self.batch = batch
        else:
            self.batch = self.batch + 1
        self._set_lrs()

    def step_epoch(self, epoch: Optional[int] = None):
        # Step the epoch index, or just set it.  If you provide the 'epoch' arg, you
        # should call this at the start of the epoch; if you don't provide the 'epoch'
        # arg, you should call it at the end of the epoch.
        if epoch is not None:
            self.epoch = epoch
        else:
            self.epoch = self.epoch + 1
        self._set_lrs()

    def _set_lrs(self):
        values = self.get_lr()
        assert len(values) == len(self.optimizer.param_groups)

        for i, data in enumerate(zip(self.optimizer.param_groups, values)):
            param_group, lr = data
            param_group["lr"] = lr
            self.print_lr(self.verbose, i, lr)
        self._last_lr = [group["lr"] for group in self.optimizer.param_groups]

    def print_lr(self, is_verbose, group, lr):
        """Display the current learning rate."""
        if is_verbose:
            logging.warning(
                f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
                f" of group {group} to {lr:.4e}."
            )


class Eden(LRScheduler):
    """
    Eden scheduler.
    The basic formula (before warmup) is:
      lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
                     (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup
    where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches
    and then stays constant at 1.

    If you don't have the concept of epochs, or one epoch takes a very long time,
    you can replace the notion of 'epoch' with some measure of the amount of data
    processed, e.g. hours of data or frames of data, with 'lr_epochs' being set to
    some measure representing "quite a lot of data": say, one fifth or one third
    of an entire training run, but it doesn't matter much.  You could also use
    Eden2 which has only the notion of batches.

    We suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam

    Args:
        optimizer: the optimizer to change the learning rates on
        lr_batches: the number of batches after which we start significantly
              decreasing the learning rate, suggest 5000.
        lr_epochs: the number of epochs after which we start significantly
              decreasing the learning rate, suggest 6 if you plan to do e.g.
              20 to 40 epochs, but may need smaller number if dataset is huge
              and you will do few epochs.
    """

    def __init__(
        self,
        optimizer: Optimizer,
        lr_batches: Union[int, float],
        lr_epochs: Union[int, float],
        warmup_batches: Union[int, float] = 500.0,
        warmup_start: float = 0.5,
        verbose: bool = False,
    ):
        super(Eden, self).__init__(optimizer, verbose)
        self.lr_batches = lr_batches
        self.lr_epochs = lr_epochs
        self.warmup_batches = warmup_batches

        assert 0.0 <= warmup_start <= 1.0, warmup_start
        self.warmup_start = warmup_start

    def get_lr(self):
        factor = (
            (self.batch**2 + self.lr_batches**2) / self.lr_batches**2
        ) ** -0.25 * (
            ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25
        )
        warmup_factor = (
            1.0
            if self.batch >= self.warmup_batches
            else self.warmup_start
            + (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
            # else 0.5 + 0.5 * (self.batch / self.warmup_batches)
        )

        return [x * factor * warmup_factor for x in self.base_lrs]


class FixedLRScheduler(LRScheduler):
    """
    Fixed learning rate scheduler.

    Args:
        optimizer: the optimizer to change the learning rates on
    """

    def __init__(
        self,
        optimizer: Optimizer,
        verbose: bool = False,
    ):
        super(FixedLRScheduler, self).__init__(optimizer, verbose)

    def get_lr(self):

        return [x for x in self.base_lrs]


def _test_eden():
    m = torch.nn.Linear(100, 100)
    from zipvoice.utils.optim import ScaledAdam

    optim = ScaledAdam(m.parameters(), lr=0.03)

    scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True)

    for epoch in range(10):
        scheduler.step_epoch(epoch)  # sets epoch to `epoch`

        for step in range(20):
            x = torch.randn(200, 100).detach()
            x.requires_grad = True
            y = m(x)
            dy = torch.randn(200, 100).detach()
            f = (y * dy).sum()
            f.backward()

            optim.step()
            scheduler.step_batch()
            optim.zero_grad()

    logging.info(f"last lr = {scheduler.get_last_lr()}")
    logging.info(f"state dict = {scheduler.state_dict()}")


if __name__ == "__main__":
    torch.set_num_threads(1)
    torch.set_num_interop_threads(1)
    logging.getLogger().setLevel(logging.INFO)
    import subprocess

    s = subprocess.check_output(
        "git status -uno .; git log -1; git diff HEAD .", shell=True
    )
    logging.info(s)

    _test_eden()