Zvo / zipvoice /bin /infer_zipvoice_onnx.py
hynt's picture
update zipvoice demo
6f024ab
# Copyright 2025 Xiaomi Corp. (authors: Han Zhu,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script generates speech with our pre-trained ZipVoice or ZipVoice-Distill
ONNX models. If no local model is specified,
Required files will be automatically downloaded from HuggingFace.
Usage:
Note: If you having trouble connecting to HuggingFace,
try switching endpoint to mirror site:
export HF_ENDPOINT=https://hf-mirror.com
(1) Inference of a single sentence:
python3 -m zipvoice.bin.infer_zipvoice_onnx \
--onnx-int8 False \
--model-name "zipvoice" \
--prompt-wav prompt.wav \
--prompt-text "I am a prompt." \
--text "I am a sentence." \
--res-wav-path result.wav
(2) Inference of a list of sentences:
python3 -m zipvoice.bin.infer_zipvoice_onnx \
--onnx-int8 False \
--model-name "zipvoice" \
--test-list test.tsv \
--res-dir results
`--model-name` can be `zipvoice` or `zipvoice_distill`,
which are the models before and after distillation, respectively.
Each line of `test.tsv` is in the format of
`{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}`.
Set `--onnx-int8 True` to use int8 quantizated ONNX model.
"""
import argparse
import datetime as dt
import json
import os
from typing import List, Tuple
import numpy as np
import onnxruntime as ort
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from lhotse.utils import fix_random_seed
from torch import Tensor, nn
from zipvoice.bin.infer_zipvoice import get_vocoder
from zipvoice.models.modules.solver import get_time_steps
from zipvoice.tokenizer.tokenizer import (
EmiliaTokenizer,
EspeakTokenizer,
LibriTTSTokenizer,
SimpleTokenizer,
)
from zipvoice.utils.common import AttributeDict, str2bool
from zipvoice.utils.feature import VocosFbank
HUGGINGFACE_REPO = "k2-fsa/ZipVoice"
TOKEN_FILE = {
"zipvoice": "zipvoice/tokens.txt",
"zipvoice_distill": "zipvoice_distill/tokens.txt",
}
MODEL_CONFIG = {
"zipvoice": "zipvoice/model.json",
"zipvoice_distill": "zipvoice_distill/model.json",
}
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--onnx-int8",
type=str2bool,
default=False,
help="Whether to use the int8 model",
)
parser.add_argument(
"--model-name",
type=str,
default="zipvoice",
choices=["zipvoice", "zipvoice_distill"],
help="The model used for inference",
)
parser.add_argument(
"--onnx-model-dir",
type=str,
default=None,
help="The path to the local onnx model. "
"Will download pre-trained checkpoint from huggingface if not specified.",
)
parser.add_argument(
"--model-config",
type=str,
default=None,
help="The model configuration file. "
"Will download model.json from huggingface if not specified.",
)
parser.add_argument(
"--vocoder-path",
type=str,
default=None,
help="The vocoder checkpoint. "
"Will download pre-trained vocoder from huggingface if not specified.",
)
parser.add_argument(
"--token-file",
type=str,
default=None,
help="The file that contains information that maps tokens to ids,"
"which is a text file with '{token}\t{token_id}' per line. "
"Will download tokens_emilia.txt from huggingface if not specified.",
)
parser.add_argument(
"--tokenizer",
type=str,
default="emilia",
choices=["emilia", "libritts", "espeak", "simple"],
help="Tokenizer type.",
)
parser.add_argument(
"--lang",
type=str,
default="en-us",
help="Language identifier, used when tokenizer type is espeak. see"
"https://github.com/rhasspy/espeak-ng/blob/master/docs/languages.md",
)
parser.add_argument(
"--test-list",
type=str,
default=None,
help="The list of prompt speech, prompt_transcription, "
"and text to synthesizein the format of "
"'{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}'.",
)
parser.add_argument(
"--prompt-wav",
type=str,
default=None,
help="The prompt wav to mimic",
)
parser.add_argument(
"--prompt-text",
type=str,
default=None,
help="The transcription of the prompt wav",
)
parser.add_argument(
"--text",
type=str,
default=None,
help="The text to synthesize",
)
parser.add_argument(
"--res-dir",
type=str,
default="results",
help="""
Path name of the generated wavs dir,
used when test-list is not None
""",
)
parser.add_argument(
"--res-wav-path",
type=str,
default="result.wav",
help="""
Path name of the generated wav path,
used when test-list is None
""",
)
parser.add_argument(
"--guidance-scale",
type=float,
default=None,
help="The scale of classifier-free guidance during inference.",
)
parser.add_argument(
"--num-step",
type=int,
default=None,
help="The number of sampling steps.",
)
parser.add_argument(
"--feat-scale",
type=float,
default=0.1,
help="The scale factor of fbank feature",
)
parser.add_argument(
"--speed",
type=float,
default=1.0,
help="Control speech speed, 1.0 means normal, >1.0 means speed up",
)
parser.add_argument(
"--t-shift",
type=float,
default=0.5,
help="Shift t to smaller ones if t_shift < 1.0",
)
parser.add_argument(
"--target-rms",
type=float,
default=0.1,
help="Target speech normalization rms value, set to 0 to disable normalization",
)
parser.add_argument(
"--seed",
type=int,
default=666,
help="Random seed",
)
return parser
class OnnxModel:
def __init__(
self,
text_encoder_path: str,
fm_decoder_path: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.init_text_encoder(text_encoder_path)
self.init_fm_decoder(fm_decoder_path)
def init_text_encoder(self, model_path: str):
self.text_encoder = ort.InferenceSession(
model_path,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
def init_fm_decoder(self, model_path: str):
self.fm_decoder = ort.InferenceSession(
model_path,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.fm_decoder.get_modelmeta().custom_metadata_map
self.feat_dim = int(meta["feat_dim"])
def run_text_encoder(
self,
tokens: Tensor,
prompt_tokens: Tensor,
prompt_features_len: Tensor,
speed: Tensor,
) -> Tuple[Tensor, Tensor]:
out = self.text_encoder.run(
[
self.text_encoder.get_outputs()[0].name,
],
{
self.text_encoder.get_inputs()[0].name: tokens.numpy(),
self.text_encoder.get_inputs()[1].name: prompt_tokens.numpy(),
self.text_encoder.get_inputs()[2].name: prompt_features_len.numpy(),
self.text_encoder.get_inputs()[3].name: speed.numpy(),
},
)
return torch.from_numpy(out[0])
def run_fm_decoder(
self,
t: Tensor,
x: Tensor,
text_condition: Tensor,
speech_condition: torch.Tensor,
guidance_scale: Tensor,
) -> Tensor:
out = self.fm_decoder.run(
[
self.fm_decoder.get_outputs()[0].name,
],
{
self.fm_decoder.get_inputs()[0].name: t.numpy(),
self.fm_decoder.get_inputs()[1].name: x.numpy(),
self.fm_decoder.get_inputs()[2].name: text_condition.numpy(),
self.fm_decoder.get_inputs()[3].name: speech_condition.numpy(),
self.fm_decoder.get_inputs()[4].name: guidance_scale.numpy(),
},
)
return torch.from_numpy(out[0])
def sample(
model: OnnxModel,
tokens: List[List[int]],
prompt_tokens: List[List[int]],
prompt_features: Tensor,
speed: float = 1.0,
t_shift: float = 0.5,
guidance_scale: float = 1.0,
num_step: int = 16,
) -> torch.Tensor:
"""
Generate acoustic features, given text tokens, prompts feature and prompt
transcription's text tokens.
Args:
tokens: a list of list of text tokens.
prompt_tokens: a list of list of prompt tokens.
prompt_features: the prompt feature with the shape
(batch_size, seq_len, feat_dim).
speed : speed control.
t_shift: time shift.
guidance_scale: the guidance scale for classifier-free guidance.
num_step: the number of steps to use in the ODE solver.
"""
# Run text encoder
assert len(tokens) == len(prompt_tokens) == 1
tokens = torch.tensor(tokens, dtype=torch.int64)
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.int64)
prompt_features_len = torch.tensor(prompt_features.size(1), dtype=torch.int64)
speed = torch.tensor(speed, dtype=torch.float32)
text_condition = model.run_text_encoder(
tokens, prompt_tokens, prompt_features_len, speed
)
batch_size, num_frames, _ = text_condition.shape
assert batch_size == 1
feat_dim = model.feat_dim
# Run flow matching model
timesteps = get_time_steps(
t_start=0.0,
t_end=1.0,
num_step=num_step,
t_shift=t_shift,
)
x = torch.randn(batch_size, num_frames, feat_dim)
speech_condition = torch.nn.functional.pad(
prompt_features, (0, 0, 0, num_frames - prompt_features.shape[1])
) # (B, T, F)
guidance_scale = torch.tensor(guidance_scale, dtype=torch.float32)
for step in range(num_step):
v = model.run_fm_decoder(
t=timesteps[step],
x=x,
text_condition=text_condition,
speech_condition=speech_condition,
guidance_scale=guidance_scale,
)
x = x + v * (timesteps[step + 1] - timesteps[step])
x = x[:, prompt_features_len.item() :, :]
return x
# Copied from zipvoice/infer/infer_zipvoice.py, but call an external sample function
def generate_sentence(
save_path: str,
prompt_text: str,
prompt_wav: str,
text: str,
model: OnnxModel,
vocoder: nn.Module,
tokenizer: EmiliaTokenizer,
feature_extractor: VocosFbank,
num_step: int = 16,
guidance_scale: float = 1.0,
speed: float = 1.0,
t_shift: float = 0.5,
target_rms: float = 0.1,
feat_scale: float = 0.1,
sampling_rate: int = 24000,
):
"""
Generate waveform of a text based on a given prompt
waveform and its transcription.
Args:
save_path (str): Path to save the generated wav.
prompt_text (str): Transcription of the prompt wav.
prompt_wav (str): Path to the prompt wav file.
text (str): Text to be synthesized into a waveform.
model (torch.nn.Module): The model used for generation.
vocoder (torch.nn.Module): The vocoder used to convert features to waveforms.
tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens.
feature_extractor (VocosFbank): The feature extractor used to
extract acoustic features.
num_step (int, optional): Number of steps for decoding. Defaults to 16.
guidance_scale (float, optional): Scale for classifier-free guidance.
Defaults to 1.0.
speed (float, optional): Speed control. Defaults to 1.0.
t_shift (float, optional): Time shift. Defaults to 0.5.
target_rms (float, optional): Target RMS for waveform normalization.
Defaults to 0.1.
feat_scale (float, optional): Scale for features.
Defaults to 0.1.
sampling_rate (int, optional): Sampling rate for the waveform.
Defaults to 24000.
Returns:
metrics (dict): Dictionary containing time and real-time
factor metrics for processing.
"""
# Convert text to tokens
tokens = tokenizer.texts_to_token_ids([text])
prompt_tokens = tokenizer.texts_to_token_ids([prompt_text])
# Load and preprocess prompt wav
prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav)
if prompt_sampling_rate != sampling_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=prompt_sampling_rate, new_freq=sampling_rate
)
prompt_wav = resampler(prompt_wav)
prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav)))
if prompt_rms < target_rms:
prompt_wav = prompt_wav * target_rms / prompt_rms
# Extract features from prompt wav
prompt_features = feature_extractor.extract(prompt_wav, sampling_rate=sampling_rate)
prompt_features = prompt_features.unsqueeze(0) * feat_scale
# Start timing
start_t = dt.datetime.now()
# Generate features
pred_features = sample(
model=model,
tokens=tokens,
prompt_tokens=prompt_tokens,
prompt_features=prompt_features,
speed=speed,
t_shift=t_shift,
guidance_scale=guidance_scale,
num_step=num_step,
)
# Postprocess predicted features
pred_features = pred_features.permute(0, 2, 1) / feat_scale # (B, C, T)
# Start vocoder processing
start_vocoder_t = dt.datetime.now()
wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1)
# Calculate processing times and real-time factors
t = (dt.datetime.now() - start_t).total_seconds()
t_no_vocoder = (start_vocoder_t - start_t).total_seconds()
t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds()
wav_seconds = wav.shape[-1] / sampling_rate
rtf = t / wav_seconds
rtf_no_vocoder = t_no_vocoder / wav_seconds
rtf_vocoder = t_vocoder / wav_seconds
metrics = {
"t": t,
"t_no_vocoder": t_no_vocoder,
"t_vocoder": t_vocoder,
"wav_seconds": wav_seconds,
"rtf": rtf,
"rtf_no_vocoder": rtf_no_vocoder,
"rtf_vocoder": rtf_vocoder,
}
# Adjust wav volume if necessary
if prompt_rms < target_rms:
wav = wav * prompt_rms / target_rms
torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate)
return metrics
def generate_list(
res_dir: str,
test_list: str,
model: OnnxModel,
vocoder: nn.Module,
tokenizer: EmiliaTokenizer,
feature_extractor: VocosFbank,
num_step: int = 16,
guidance_scale: float = 1.0,
speed: float = 1.0,
t_shift: float = 0.5,
target_rms: float = 0.1,
feat_scale: float = 0.1,
sampling_rate: int = 24000,
):
total_t = []
total_t_no_vocoder = []
total_t_vocoder = []
total_wav_seconds = []
with open(test_list, "r") as fr:
lines = fr.readlines()
for i, line in enumerate(lines):
wav_name, prompt_text, prompt_wav, text = line.strip().split("\t")
save_path = f"{res_dir}/{wav_name}.wav"
metrics = generate_sentence(
save_path=save_path,
prompt_text=prompt_text,
prompt_wav=prompt_wav,
text=text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
num_step=num_step,
guidance_scale=guidance_scale,
speed=speed,
t_shift=t_shift,
target_rms=target_rms,
feat_scale=feat_scale,
sampling_rate=sampling_rate,
)
print(f"[Sentence: {i}] RTF: {metrics['rtf']:.4f}")
total_t.append(metrics["t"])
total_t_no_vocoder.append(metrics["t_no_vocoder"])
total_t_vocoder.append(metrics["t_vocoder"])
total_wav_seconds.append(metrics["wav_seconds"])
print(f"Average RTF: {np.sum(total_t) / np.sum(total_wav_seconds):.4f}")
print(
f"Average RTF w/o vocoder: "
f"{np.sum(total_t_no_vocoder) / np.sum(total_wav_seconds):.4f}"
)
print(
f"Average RTF vocoder: "
f"{np.sum(total_t_vocoder) / np.sum(total_wav_seconds):.4f}"
)
@torch.inference_mode()
def main():
parser = get_parser()
args = parser.parse_args()
params = AttributeDict()
params.update(vars(args))
fix_random_seed(params.seed)
model_defaults = {
"zipvoice": {
"num_step": 16,
"guidance_scale": 1.0,
},
"zipvoice_distill": {
"num_step": 8,
"guidance_scale": 3.0,
},
}
model_specific_defaults = model_defaults.get(params.model_name, {})
for param, value in model_specific_defaults.items():
if getattr(params, param) is None:
setattr(params, param, value)
print(f"Setting {param} to default value: {value}")
assert (params.test_list is not None) ^ (
(params.prompt_wav and params.prompt_text and params.text) is not None
), (
"For inference, please provide prompts and text with either '--test-list'"
" or '--prompt-wav, --prompt-text and --text'."
)
print("Loading model...")
if params.model_config is None:
model_config = hf_hub_download(
HUGGINGFACE_REPO, filename=MODEL_CONFIG[params.model_name]
)
else:
model_config = params.model_config
with open(model_config, "r") as f:
model_config = json.load(f)
if params.token_file is None:
token_file = hf_hub_download(
HUGGINGFACE_REPO, filename=TOKEN_FILE[params.model_name]
)
else:
token_file = params.token_file
if params.tokenizer == "emilia":
tokenizer = EmiliaTokenizer(token_file=token_file)
elif params.dataset == "libritts":
tokenizer = LibriTTSTokenizer(token_file=token_file)
elif params.tokenizer == "espeak":
tokenizer = EspeakTokenizer(token_file=token_file, lang=params.lang)
else:
assert params.tokenizer == "simple"
tokenizer = SimpleTokenizer(token_file=token_file)
if params.onnx_model_dir is not None:
dirname = params.onnx_model_dir
else:
if params.model_name == "zipvoice_distill":
dirname = "zipvoice_distill"
else:
dirname = "zipvoice"
if not params.onnx_int8:
text_encoder_path = f"{dirname}/text_encoder.onnx"
fm_decoder_path = f"{dirname}/fm_decoder.onnx"
else:
text_encoder_path = f"{dirname}/text_encoder_int8.onnx"
fm_decoder_path = f"{dirname}/fm_decoder_int8.onnx"
if params.onnx_model_dir is None:
text_encoder_path = hf_hub_download(
HUGGINGFACE_REPO, filename=text_encoder_path
)
fm_decoder_path = hf_hub_download(HUGGINGFACE_REPO, filename=fm_decoder_path)
model = OnnxModel(text_encoder_path, fm_decoder_path)
vocoder = get_vocoder(params.vocoder_path)
vocoder.eval()
if model_config["feature"]["type"] == "vocos":
feature_extractor = VocosFbank()
else:
raise NotImplementedError(
f"Unsupported feature type: {model_config['feature']['type']}"
)
params.sampling_rate = model_config["feature"]["sampling_rate"]
print("Start generating...")
if params.test_list:
os.makedirs(params.res_dir, exist_ok=True)
generate_list(
res_dir=params.res_dir,
test_list=params.test_list,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
num_step=params.num_step,
guidance_scale=params.guidance_scale,
speed=params.speed,
t_shift=params.t_shift,
target_rms=params.target_rms,
feat_scale=params.feat_scale,
sampling_rate=params.sampling_rate,
)
else:
generate_sentence(
save_path=params.res_wav_path,
prompt_text=params.prompt_text,
prompt_wav=params.prompt_wav,
text=params.text,
model=model,
vocoder=vocoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
num_step=params.num_step,
guidance_scale=params.guidance_scale,
speed=params.speed,
t_shift=params.t_shift,
target_rms=params.target_rms,
feat_scale=params.feat_scale,
sampling_rate=params.sampling_rate,
)
print("Done")
if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
main()