Zvo / zipvoice /bin /train_zipvoice.py
hynt's picture
update zipvoice demo
6f024ab
#!/usr/bin/env python3
# Copyright 2024-2025 Xiaomi Corp. (authors: Wei Kang,
# Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script trains a ZipVoice model with the flow-matching loss.
Usage:
python3 -m zipvoice.bin.train_zipvoice \
--world-size 8 \
--use-fp16 1 \
--num-epochs 11 \
--max-duration 500 \
--lr-hours 30000 \
--model-config conf/zipvoice_base.json \
--tokenizer emilia \
--token-file "data/tokens_emilia.txt" \
--dataset emilia \
--manifest-dir data/fbank \
--exp-dir exp/zipvoice
"""
import argparse
import copy
import json
import logging
import os
from functools import partial
from pathlib import Path
from shutil import copyfile
from typing import List, Optional, Tuple, Union
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from lhotse.cut import Cut, CutSet
from lhotse.utils import fix_random_seed
from torch import Tensor
from torch.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.utils.tensorboard import SummaryWriter
import zipvoice.utils.diagnostics as diagnostics
from zipvoice.dataset.datamodule import TtsDataModule
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.tokenizer.tokenizer import (
EmiliaTokenizer,
EspeakTokenizer,
LibriTTSTokenizer,
SimpleTokenizer,
)
from zipvoice.utils.checkpoint import (
load_checkpoint,
remove_checkpoints,
resume_checkpoint,
save_checkpoint,
save_checkpoint_with_global_batch_idx,
update_averaged_model,
)
from zipvoice.utils.common import (
AttributeDict,
MetricsTracker,
cleanup_dist,
get_adjusted_batch_count,
get_env_info,
get_parameter_groups_with_lrs,
prepare_input,
set_batch_count,
setup_dist,
setup_logger,
str2bool,
)
from zipvoice.utils.hooks import register_inf_check_hooks
from zipvoice.utils.lr_scheduler import Eden, FixedLRScheduler, LRScheduler
from zipvoice.utils.optim import ScaledAdam
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, LRScheduler]
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
)
parser.add_argument(
"--master-port",
type=int,
default=12356,
help="Master port to use for DDP training.",
)
parser.add_argument(
"--tensorboard",
type=str2bool,
default=True,
help="Should various information be logged in tensorboard.",
)
parser.add_argument(
"--num-epochs",
type=int,
default=11,
help="Number of epochs to train.",
)
parser.add_argument(
"--num-iters",
type=int,
default=0,
help="Number of iter to train, will ignore num_epochs if > 0.",
)
parser.add_argument(
"--start-epoch",
type=int,
default=1,
help="""Resume training from this epoch. It should be positive.
If larger than 1, it will load checkpoint from
exp-dir/epoch-{start_epoch-1}.pt
""",
)
parser.add_argument(
"--checkpoint",
type=str,
default=None,
help="""Checkpoints of pre-trained models, will load it if not None
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="exp/zipvoice",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--base-lr", type=float, default=0.02, help="The base learning rate."
)
parser.add_argument(
"--lr-batches",
type=float,
default=7500,
help="""Number of steps that affects how rapidly the learning rate
decreases. We suggest not to change this.""",
)
parser.add_argument(
"--lr-epochs",
type=float,
default=10,
help="""Number of epochs that affects how rapidly the learning rate decreases.
""",
)
parser.add_argument(
"--lr-hours",
type=float,
default=0,
help="""If positive, --epoch is ignored and it specifies the number of hours
that affects how rapidly the learning rate decreases.
""",
)
parser.add_argument(
"--ref-duration",
type=float,
default=50,
help="""Reference batch duration for purposes of adjusting batch counts for"
setting various schedules inside the model".
""",
)
parser.add_argument(
"--finetune",
type=str2bool,
default=False,
help="Whether to use the fine-tuning mode, will used a fixed learning rate "
"schedule and skip the large dropout phase.",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="The seed for random generators intended for reproducibility",
)
parser.add_argument(
"--print-diagnostics",
type=str2bool,
default=False,
help="Accumulate stats on activations, print them and exit.",
)
parser.add_argument(
"--scan-oom",
type=str2bool,
default=False,
help="Scan pessimistic batches to see whether they cause OOMs.",
)
parser.add_argument(
"--inf-check",
type=str2bool,
default=False,
help="Add hooks to check for infinite module outputs and gradients.",
)
parser.add_argument(
"--save-every-n",
type=int,
default=5000,
help="""Save checkpoint after processing this number of batches"
periodically. We save checkpoint to exp-dir/ whenever
params.batch_idx_train % save_every_n == 0. The checkpoint filename
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
end of each epoch where `xxx` is the epoch number counting from 1.
""",
)
parser.add_argument(
"--keep-last-k",
type=int,
default=30,
help="""Only keep this number of checkpoints on disk.
For instance, if it is 3, there are only 3 checkpoints
in the exp-dir with filenames `checkpoint-xxx.pt`.
It does not affect checkpoints with name `epoch-xxx.pt`.
""",
)
parser.add_argument(
"--average-period",
type=int,
default=200,
help="""Update the averaged model, namely `model_avg`, after processing
this number of batches. `model_avg` is a separate version of model,
in which each floating-point parameter is the average of all the
parameters from the start of training. Each time we take the average,
we do: `model_avg = model * (average_period / batch_idx_train) +
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
""",
)
parser.add_argument(
"--use-fp16",
type=str2bool,
default=True,
help="Whether to use half precision training.",
)
parser.add_argument(
"--feat-scale",
type=float,
default=0.1,
help="The scale factor of fbank feature",
)
parser.add_argument(
"--condition-drop-ratio",
type=float,
default=0.2,
help="The drop rate of text condition during training.",
)
parser.add_argument(
"--dataset",
type=str,
default="emilia",
choices=["emilia", "libritts", "custom"],
help="The used training dataset",
)
parser.add_argument(
"--train-manifest",
type=str,
help="Path of the training manifest",
)
parser.add_argument(
"--dev-manifest",
type=str,
help="Path of the validation manifest",
)
parser.add_argument(
"--min-len",
type=float,
default=1.0,
help="The minimum audio length used for training",
)
parser.add_argument(
"--max-len",
type=float,
default=30.0,
help="The maximum audio length used for training",
)
parser.add_argument(
"--model-config",
type=str,
default="conf/zipvoice_base.json",
help="The model configuration file.",
)
parser.add_argument(
"--tokenizer",
type=str,
default="emilia",
choices=["emilia", "libritts", "espeak", "simple"],
help="Tokenizer type.",
)
parser.add_argument(
"--lang",
type=str,
default="en-us",
help="Language identifier, used when tokenizer type is espeak. see"
"https://github.com/rhasspy/espeak-ng/blob/master/docs/languages.md",
)
parser.add_argument(
"--token-file",
type=str,
default="data/tokens_emilia.txt",
help="The file that contains information that maps tokens to ids,"
"which is a text file with '{token}\t{token_id}' per line.",
)
return parser
def get_params() -> AttributeDict:
"""Return a dict containing training parameters.
All training related parameters that are not passed from the commandline
are saved in the variable `params`.
Commandline options are merged into `params` after they are parsed, so
you can also access them via `params`.
Explanation of options saved in `params`:
- best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is
updated during the training.
- best_valid_loss: Best validation loss so far. It is used to select
the model that has the lowest validation loss. It is
updated during the training.
- best_train_epoch: It is the epoch that has the best training loss.
- best_valid_epoch: It is the epoch that has the best validation loss.
- batch_idx_train: Used to writing statistics to tensorboard. It
contains number of batches trained so far across
epochs.
- log_interval: Print training loss if batch_idx % log_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- env_info: A dict containing information about the environment.
"""
params = AttributeDict(
{
"best_train_loss": float("inf"),
"best_valid_loss": float("inf"),
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 50,
"reset_interval": 200,
"env_info": get_env_info(),
}
)
return params
def compute_fbank_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
features: Tensor,
features_lens: Tensor,
tokens: List[List[int]],
is_training: bool,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training.
features:
The target acoustic feature.
features_lens:
The number of frames of each utterance.
tokens:
Input tokens that representing the transcripts.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
"""
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
batch_size, num_frames, _ = features.shape
features = torch.nn.functional.pad(
features, (0, 0, 0, num_frames - features.size(1))
) # (B, T, F)
noise = torch.randn_like(features) # (B, T, F)
# Sampling t from uniform distribution
if is_training:
t = torch.rand(batch_size, 1, 1, device=device)
else:
t = (
(torch.arange(batch_size, device=device) / batch_size)
.unsqueeze(1)
.unsqueeze(2)
)
with torch.set_grad_enabled(is_training):
loss = model(
tokens=tokens,
features=features,
features_lens=features_lens,
noise=noise,
t=t,
condition_drop_ratio=params.condition_drop_ratio,
)
assert loss.requires_grad == is_training
info = MetricsTracker()
num_frames = features_lens.sum().item()
info["frames"] = num_frames
info["loss"] = loss.detach().cpu().item() * num_frames
return loss, info
def train_one_epoch(
params: AttributeDict,
model: Union[nn.Module, DDP],
optimizer: Optimizer,
scheduler: LRSchedulerType,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
rank: int = 0,
) -> None:
"""Train the model for one epoch.
The training loss from the mean of all frames is saved in
`params.train_loss`. It runs the validation process every
`params.valid_interval` batches.
Args:
params:
It is returned by :func:`get_params`.
model:
The model for training.
optimizer:
The optimizer.
scheduler:
The learning rate scheduler, we call step() every epoch.
train_dl:
Dataloader for the training dataset.
valid_dl:
Dataloader for the validation dataset.
scaler:
The scaler used for mix precision training.
tb_writer:
Writer to write log messages to tensorboard.
world_size:
Number of nodes in DDP training. If it is 1, DDP is disabled.
rank:
The rank of the node in DDP training. If no DDP is used, it should
be set to 0.
"""
model.train()
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
# used to track the stats over iterations in one epoch
tot_loss = MetricsTracker()
saved_bad_model = False
def save_bad_model(suffix: str = ""):
save_checkpoint(
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
sampler=train_dl.sampler,
scaler=scaler,
rank=0,
)
for batch_idx, batch in enumerate(train_dl):
if batch_idx % 10 == 0:
if params.finetune:
set_batch_count(model, get_adjusted_batch_count(params) + 100000)
else:
set_batch_count(model, get_adjusted_batch_count(params))
if (
params.batch_idx_train > 0
and params.batch_idx_train % params.valid_interval == 0
and not params.print_diagnostics
):
logging.info("Computing validation loss")
valid_info = compute_validation_loss(
params=params,
model=model,
valid_dl=valid_dl,
world_size=world_size,
)
model.train()
logging.info(
f"Epoch {params.cur_epoch}, global_batch_idx: {params.batch_idx_train},"
f" validation: {valid_info}"
)
logging.info(
f"Maximum memory allocated so far is "
f"{torch.cuda.max_memory_allocated() // 1000000}MB"
)
if tb_writer is not None:
valid_info.write_summary(
tb_writer, "train/valid_", params.batch_idx_train
)
params.batch_idx_train += 1
batch_size = len(batch["text"])
tokens, features, features_lens = prepare_input(
params=params,
batch=batch,
device=device,
return_tokens=True,
return_feature=True,
)
try:
with autocast("cuda", enabled=params.use_fp16):
loss, loss_info = compute_fbank_loss(
params=params,
model=model,
features=features,
features_lens=features_lens,
tokens=tokens,
is_training=True,
)
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
scaler.scale(loss).backward()
scheduler.step_batch(params.batch_idx_train)
# Use the number of hours of speech to adjust the learning rate
if params.lr_hours > 0:
scheduler.step_epoch(
params.batch_idx_train
* params.max_duration
* params.world_size
/ 3600
)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
except Exception as e:
logging.info(f"Caught exception : {e}.")
save_bad_model()
raise
if params.print_diagnostics and batch_idx == 5:
return
if (
rank == 0
and params.batch_idx_train > 0
and params.batch_idx_train % params.average_period == 0
):
update_averaged_model(
params=params,
model_cur=model,
model_avg=model_avg,
)
if (
params.batch_idx_train > 0
and params.batch_idx_train % params.save_every_n == 0
):
save_checkpoint_with_global_batch_idx(
out_dir=params.exp_dir,
global_batch_idx=params.batch_idx_train,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
sampler=train_dl.sampler,
scaler=scaler,
rank=rank,
)
remove_checkpoints(
out_dir=params.exp_dir,
topk=params.keep_last_k,
rank=rank,
)
if params.num_iters > 0 and params.batch_idx_train > params.num_iters:
break
if params.batch_idx_train % 100 == 0 and params.use_fp16:
# If the grad scale was less than 1, try increasing it. The _growth_interval
# of the grad scaler is configurable, but we can't configure it to have
# different behavior depending on the current grad scale.
cur_grad_scale = scaler._scale.item()
if cur_grad_scale < 1024.0 or (
cur_grad_scale < 4096.0 and params.batch_idx_train % 400 == 0
):
scaler.update(cur_grad_scale * 2.0)
if cur_grad_scale < 0.01:
if not saved_bad_model:
save_bad_model(suffix="-first-warning")
saved_bad_model = True
logging.warning(f"Grad scale is small: {cur_grad_scale}")
if cur_grad_scale < 1.0e-05:
save_bad_model()
raise RuntimeError(
f"grad_scale is too small, exiting: {cur_grad_scale}"
)
if params.batch_idx_train % params.log_interval == 0:
cur_lr = max(scheduler.get_last_lr())
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
logging.info(
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
f"global_batch_idx: {params.batch_idx_train}, "
f"batch size: {batch_size}, "
f"loss[{loss_info}], tot_loss[{tot_loss}], "
f"cur_lr: {cur_lr:.2e}, "
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
)
if tb_writer is not None:
tb_writer.add_scalar(
"train/learning_rate", cur_lr, params.batch_idx_train
)
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
if params.use_fp16:
tb_writer.add_scalar(
"train/grad_scale",
cur_grad_scale,
params.batch_idx_train,
)
loss_value = tot_loss["loss"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss
def compute_validation_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> MetricsTracker:
"""Run the validation process."""
model.eval()
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
# used to summary the stats over iterations
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
tokens, features, features_lens = prepare_input(
params=params,
batch=batch,
device=device,
return_tokens=True,
return_feature=True,
)
loss, loss_info = compute_fbank_loss(
params=params,
model=model,
features=features,
features_lens=features_lens,
tokens=tokens,
is_training=False,
)
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
if world_size > 1:
tot_loss.reduce(loss.device)
loss_value = tot_loss["loss"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss
def display_and_save_batch(
batch: dict,
params: AttributeDict,
) -> None:
"""Display the batch statistics and save the batch into disk.
Args:
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
params:
Parameters for training. See :func:`get_params`.
sp:
The BPE model.
"""
from lhotse.utils import uuid4
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
logging.info(f"Saving batch to {filename}")
torch.save(batch, filename)
features = batch["features"]
tokens = batch["tokens"]
logging.info(f"features shape: {features.shape}")
num_tokens = sum(len(i) for i in tokens)
logging.info(f"num tokens: {num_tokens}")
def scan_pessimistic_batches_for_oom(
model: Union[nn.Module, DDP],
train_dl: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
params: AttributeDict,
):
from lhotse.dataset import find_pessimistic_batches
logging.info(
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
)
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
tokens, features, features_lens = prepare_input(
params=params,
batch=batch,
device=device,
return_tokens=True,
return_feature=True,
)
try:
with autocast("cuda", enabled=params.use_fp16):
loss, loss_info = compute_fbank_loss(
params=params,
model=model,
features=features,
features_lens=features_lens,
tokens=tokens,
is_training=True,
)
loss.backward()
optimizer.zero_grad()
except Exception as e:
if "CUDA out of memory" in str(e):
logging.error(
"Your GPU ran out of memory with the current "
"max_duration setting. We recommend decreasing "
"max_duration and trying again.\n"
f"Failing criterion: {criterion} "
f"(={crit_values[criterion]}) ..."
)
display_and_save_batch(batch, params=params)
raise
logging.info(
f"Maximum memory allocated so far is "
f"{torch.cuda.max_memory_allocated() // 1000000}MB"
)
def tokenize_text(c: Cut, tokenizer):
text = c.supervisions[0].text
tokens = tokenizer.texts_to_token_ids([text])
c.supervisions[0].tokens = tokens[0]
return c
def run(rank, world_size, args):
"""
Args:
rank:
It is a value between 0 and `world_size-1`, which is
passed automatically by `mp.spawn()` in :func:`main`.
The node with rank 0 is responsible for saving checkpoint.
world_size:
Number of GPUs for DDP training.
args:
The return value of get_parser().parse_args()
"""
params = get_params()
params.update(vars(args))
params.valid_interval = params.save_every_n
# Set epoch to a large number to ignore it.
if params.num_iters > 0:
params.num_epochs = 1000000
with open(params.model_config, "r") as f:
model_config = json.load(f)
params.update(model_config["model"])
params.update(model_config["feature"])
fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
os.makedirs(f"{params.exp_dir}", exist_ok=True)
copyfile(src=params.model_config, dst=f"{params.exp_dir}/model.json")
copyfile(src=params.token_file, dst=f"{params.exp_dir}/tokens.txt")
setup_logger(f"{params.exp_dir}/log/log-train")
if args.tensorboard and rank == 0:
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
else:
tb_writer = None
if torch.cuda.is_available():
params.device = torch.device("cuda", rank)
else:
params.device = torch.device("cpu")
logging.info(f"Device: {params.device}")
if params.tokenizer == "emilia":
tokenizer = EmiliaTokenizer(token_file=params.token_file)
elif params.tokenizer == "libritts":
tokenizer = LibriTTSTokenizer(token_file=params.token_file)
elif params.tokenizer == "espeak":
tokenizer = EspeakTokenizer(token_file=params.token_file, lang=params.lang)
else:
assert params.tokenizer == "simple"
tokenizer = SimpleTokenizer(token_file=params.token_file)
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
params.update(tokenizer_config)
logging.info(params)
logging.info("About to create model")
model = ZipVoice(
**model_config["model"],
**tokenizer_config,
)
if params.checkpoint is not None:
logging.info(f"Loading pre-trained model from {params.checkpoint}")
_ = load_checkpoint(filename=params.checkpoint, model=model, strict=True)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of parameters : {num_param}")
model_avg: Optional[nn.Module] = None
if rank == 0:
# model_avg is only used with rank 0
model_avg = copy.deepcopy(model).to(torch.float64)
assert params.start_epoch > 0, params.start_epoch
if params.start_epoch > 1:
checkpoints = resume_checkpoint(params=params, model=model, model_avg=model_avg)
model = model.to(params.device)
if world_size > 1:
logging.info("Using DDP")
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
optimizer = ScaledAdam(
get_parameter_groups_with_lrs(
model,
lr=params.base_lr,
include_names=True,
),
lr=params.base_lr, # should have no effect
clipping_scale=2.0,
)
assert params.lr_hours >= 0
if params.finetune:
scheduler = FixedLRScheduler(optimizer)
elif params.lr_hours > 0:
scheduler = Eden(optimizer, params.lr_batches, params.lr_hours)
else:
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
scaler = GradScaler("cuda", enabled=params.use_fp16)
if params.start_epoch > 1 and checkpoints is not None:
# load state_dict for optimizers
if "optimizer" in checkpoints:
logging.info("Loading optimizer state dict")
optimizer.load_state_dict(checkpoints["optimizer"])
# load state_dict for schedulers
if "scheduler" in checkpoints:
logging.info("Loading scheduler state dict")
scheduler.load_state_dict(checkpoints["scheduler"])
if "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
if params.print_diagnostics:
opts = diagnostics.TensorDiagnosticOptions(
512
) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)
if params.inf_check:
register_inf_check_hooks(model)
def remove_short_and_long_utt(c: Cut, min_len: float, max_len: float):
if c.duration < min_len or c.duration > max_len:
return False
return True
_remove_short_and_long_utt = partial(
remove_short_and_long_utt, min_len=params.min_len, max_len=params.max_len
)
datamodule = TtsDataModule(args)
if params.dataset == "emilia":
train_cuts = CutSet.mux(
datamodule.train_emilia_EN_cuts(),
datamodule.train_emilia_ZH_cuts(),
weights=[46000, 49000],
)
train_cuts = train_cuts.filter(_remove_short_and_long_utt)
dev_cuts = CutSet.mux(
datamodule.dev_emilia_EN_cuts(),
datamodule.dev_emilia_ZH_cuts(),
weights=[0.5, 0.5],
)
elif params.dataset == "libritts":
train_cuts = datamodule.train_libritts_cuts()
train_cuts = train_cuts.filter(_remove_short_and_long_utt)
dev_cuts = datamodule.dev_libritts_cuts()
else:
assert params.dataset == "custom"
train_cuts = datamodule.train_custom_cuts(params.train_manifest)
train_cuts = train_cuts.filter(_remove_short_and_long_utt)
dev_cuts = datamodule.dev_custom_cuts(params.dev_manifest)
# To avoid OOM issues due to too long dev cuts
dev_cuts = dev_cuts.filter(_remove_short_and_long_utt)
_tokenize_text = partial(tokenize_text, tokenizer=tokenizer)
train_cuts = train_cuts.map(_tokenize_text)
dev_cuts = dev_cuts.map(_tokenize_text)
train_dl = datamodule.train_dataloaders(train_cuts)
valid_dl = datamodule.dev_dataloaders(dev_cuts)
if params.scan_oom:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,
optimizer=optimizer,
params=params,
)
logging.info("Training started")
for epoch in range(params.start_epoch, params.num_epochs + 1):
logging.info(f"Start epoch {epoch}")
if params.lr_hours == 0:
scheduler.step_epoch(epoch - 1)
fix_random_seed(params.seed + epoch - 1)
train_dl.sampler.set_epoch(epoch - 1)
params.cur_epoch = epoch
if tb_writer is not None:
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
train_one_epoch(
params=params,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
train_dl=train_dl,
valid_dl=valid_dl,
scaler=scaler,
tb_writer=tb_writer,
world_size=world_size,
rank=rank,
)
if params.num_iters > 0 and params.batch_idx_train > params.num_iters:
break
if params.print_diagnostics:
diagnostic.print_diagnostics()
break
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
save_checkpoint(
filename=filename,
params=params,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
sampler=train_dl.sampler,
scaler=scaler,
rank=rank,
)
if rank == 0:
if params.best_train_epoch == params.cur_epoch:
best_train_filename = params.exp_dir / "best-train-loss.pt"
copyfile(src=filename, dst=best_train_filename)
if params.best_valid_epoch == params.cur_epoch:
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
copyfile(src=filename, dst=best_valid_filename)
logging.info("Done!")
if world_size > 1:
torch.distributed.barrier()
cleanup_dist()
def main():
parser = get_parser()
TtsDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
world_size = args.world_size
assert world_size >= 1
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(rank=0, world_size=1, args=args)
if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
main()