|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Calculate pairwise Speaker Similarity betweeen two speech directories. |
|
SV model wavlm_large_finetune.pth is downloaded from |
|
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification |
|
SSL model wavlm_large.pt is downloaded from |
|
https://huggingface.co/s3prl/converted_ckpts/resolve/main/wavlm_large.pt |
|
""" |
|
import argparse |
|
import logging |
|
import os |
|
|
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from tqdm import tqdm |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--eval-path", type=str, help="path of the evaluated speech directory" |
|
) |
|
parser.add_argument( |
|
"--test-list", |
|
type=str, |
|
help="path of the file list that contains the corresponding " |
|
"relationship between the prompt and evaluated speech. " |
|
"The first column is the wav name and the third column is the prompt speech", |
|
) |
|
parser.add_argument( |
|
"--sv-model-path", |
|
type=str, |
|
default="model/UniSpeech/wavlm_large_finetune.pth", |
|
help="path of the wavlm-based ECAPA-TDNN model", |
|
) |
|
parser.add_argument( |
|
"--ssl-model-path", |
|
type=str, |
|
default="model/s3prl/wavlm_large.pt", |
|
help="path of the wavlm SSL model", |
|
) |
|
return parser |
|
|
|
|
|
class SpeakerSimilarity: |
|
def __init__( |
|
self, |
|
sv_model_path="model/UniSpeech/wavlm_large_finetune.pth", |
|
ssl_model_path="model/s3prl/wavlm_large.pt", |
|
): |
|
""" |
|
Initialize |
|
""" |
|
self.sample_rate = 16000 |
|
self.channels = 1 |
|
self.device = ( |
|
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
) |
|
logging.info("[Speaker Similarity] Using device: {}".format(self.device)) |
|
self.model = ECAPA_TDNN_WAVLLM( |
|
feat_dim=1024, |
|
channels=512, |
|
emb_dim=256, |
|
sr=16000, |
|
ssl_model_path=ssl_model_path, |
|
) |
|
state_dict = torch.load( |
|
sv_model_path, map_location=lambda storage, loc: storage |
|
) |
|
self.model.load_state_dict(state_dict["model"], strict=False) |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
def get_embeddings(self, wav_list, dtype="float32"): |
|
""" |
|
Get embeddings |
|
""" |
|
|
|
def _load_speech_task(fname, sample_rate): |
|
|
|
wav_data, sr = sf.read(fname, dtype=dtype) |
|
if sr != sample_rate: |
|
wav_data = librosa.resample( |
|
wav_data, orig_sr=sr, target_sr=self.sample_rate |
|
) |
|
wav_data = torch.from_numpy(wav_data) |
|
|
|
return wav_data |
|
|
|
embd_lst = [] |
|
for file_path in tqdm(wav_list): |
|
speech = _load_speech_task(file_path, self.sample_rate) |
|
speech = speech.to(self.device) |
|
with torch.no_grad(): |
|
embd = self.model([speech]) |
|
embd_lst.append(embd) |
|
|
|
return embd_lst |
|
|
|
def score( |
|
self, |
|
eval_path, |
|
test_list, |
|
dtype="float32", |
|
): |
|
""" |
|
Computes the Speaker Similarity (SIM-o) between two directories of speech files. |
|
|
|
Parameters: |
|
- eval_path (str): Path to the directory containing evaluation speech files. |
|
- test_list (str): Path to the file containing the corresponding relationship |
|
between prompt and evaluated speech. |
|
- dtype (str, optional): Data type for loading speech. Default is "float32". |
|
|
|
Returns: |
|
- float: The Speaker Similarity (SIM-o) score between the two directories |
|
of speech files. |
|
""" |
|
prompt_wavs = [] |
|
eval_wavs = [] |
|
with open(test_list, "r") as fr: |
|
lines = fr.readlines() |
|
for line in lines: |
|
wav_name, prompt_text, prompt_wav, text = line.strip().split("\t") |
|
prompt_wavs.append(prompt_wav) |
|
eval_wavs.append(os.path.join(eval_path, wav_name + ".wav")) |
|
embds_prompt = self.get_embeddings(prompt_wavs, dtype=dtype) |
|
|
|
embds_eval = self.get_embeddings(eval_wavs, dtype=dtype) |
|
|
|
|
|
if len(embds_prompt) == 0: |
|
logging.info("[Speaker Similarity] real set dir is empty, exiting...") |
|
return -1 |
|
if len(embds_eval) == 0: |
|
logging.info("[Speaker Similarity] eval set dir is empty, exiting...") |
|
return -1 |
|
|
|
scores = [] |
|
for real_embd, eval_embd in zip(embds_prompt, embds_eval): |
|
scores.append( |
|
torch.nn.functional.cosine_similarity(real_embd, eval_embd, dim=-1) |
|
.detach() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
return np.mean(scores) |
|
|
|
|
|
|
|
|
|
""" Res2Conv1d + BatchNorm1d + ReLU |
|
""" |
|
|
|
|
|
class Res2Conv1dReluBn(nn.Module): |
|
""" |
|
in_channels == out_channels == channels |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
scale=4, |
|
): |
|
super().__init__() |
|
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) |
|
self.scale = scale |
|
self.width = channels // scale |
|
self.nums = scale if scale == 1 else scale - 1 |
|
|
|
self.convs = [] |
|
self.bns = [] |
|
for i in range(self.nums): |
|
self.convs.append( |
|
nn.Conv1d( |
|
self.width, |
|
self.width, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
bias=bias, |
|
) |
|
) |
|
self.bns.append(nn.BatchNorm1d(self.width)) |
|
self.convs = nn.ModuleList(self.convs) |
|
self.bns = nn.ModuleList(self.bns) |
|
|
|
def forward(self, x): |
|
out = [] |
|
spx = torch.split(x, self.width, 1) |
|
for i in range(self.nums): |
|
if i == 0: |
|
sp = spx[i] |
|
else: |
|
sp = sp + spx[i] |
|
|
|
sp = self.convs[i](sp) |
|
sp = self.bns[i](F.relu(sp)) |
|
out.append(sp) |
|
if self.scale != 1: |
|
out.append(spx[self.nums]) |
|
out = torch.cat(out, dim=1) |
|
|
|
return out |
|
|
|
|
|
""" Conv1d + BatchNorm1d + ReLU |
|
""" |
|
|
|
|
|
class Conv1dReluBn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.conv = nn.Conv1d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
bias=bias, |
|
) |
|
self.bn = nn.BatchNorm1d(out_channels) |
|
|
|
def forward(self, x): |
|
return self.bn(F.relu(self.conv(x))) |
|
|
|
|
|
""" The SE connection of 1D case. |
|
""" |
|
|
|
|
|
class SE_Connect(nn.Module): |
|
def __init__(self, channels, se_bottleneck_dim=128): |
|
super().__init__() |
|
self.linear1 = nn.Linear(channels, se_bottleneck_dim) |
|
self.linear2 = nn.Linear(se_bottleneck_dim, channels) |
|
|
|
def forward(self, x): |
|
out = x.mean(dim=2) |
|
out = F.relu(self.linear1(out)) |
|
out = torch.sigmoid(self.linear2(out)) |
|
out = x * out.unsqueeze(2) |
|
|
|
return out |
|
|
|
|
|
""" SE-Res2Block of the ECAPA-TDNN architecture. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SE_Res2Block(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
scale, |
|
se_bottleneck_dim, |
|
): |
|
super().__init__() |
|
self.Conv1dReluBn1 = Conv1dReluBn( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.Res2Conv1dReluBn = Res2Conv1dReluBn( |
|
out_channels, kernel_size, stride, padding, dilation, scale=scale |
|
) |
|
self.Conv1dReluBn2 = Conv1dReluBn( |
|
out_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) |
|
|
|
self.shortcut = None |
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv1d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
) |
|
|
|
def forward(self, x): |
|
residual = x |
|
if self.shortcut: |
|
residual = self.shortcut(x) |
|
|
|
x = self.Conv1dReluBn1(x) |
|
x = self.Res2Conv1dReluBn(x) |
|
x = self.Conv1dReluBn2(x) |
|
x = self.SE_Connect(x) |
|
|
|
return x + residual |
|
|
|
|
|
""" Attentive weighted mean and standard deviation pooling. |
|
""" |
|
|
|
|
|
class AttentiveStatsPool(nn.Module): |
|
def __init__(self, in_dim, attention_channels=128, global_context_att=False): |
|
super().__init__() |
|
self.global_context_att = global_context_att |
|
|
|
|
|
|
|
if global_context_att: |
|
self.linear1 = nn.Conv1d( |
|
in_dim * 3, attention_channels, kernel_size=1 |
|
) |
|
else: |
|
self.linear1 = nn.Conv1d( |
|
in_dim, attention_channels, kernel_size=1 |
|
) |
|
self.linear2 = nn.Conv1d( |
|
attention_channels, in_dim, kernel_size=1 |
|
) |
|
|
|
def forward(self, x): |
|
|
|
if self.global_context_att: |
|
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) |
|
context_std = torch.sqrt( |
|
torch.var(x, dim=-1, keepdim=True) + 1e-10 |
|
).expand_as(x) |
|
x_in = torch.cat((x, context_mean, context_std), dim=1) |
|
else: |
|
x_in = x |
|
|
|
|
|
alpha = torch.tanh(self.linear1(x_in)) |
|
|
|
alpha = torch.softmax(self.linear2(alpha), dim=2) |
|
mean = torch.sum(alpha * x, dim=2) |
|
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2 |
|
std = torch.sqrt(residuals.clamp(min=1e-9)) |
|
return torch.cat([mean, std], dim=1) |
|
|
|
|
|
class ECAPA_TDNN_WAVLLM(nn.Module): |
|
def __init__( |
|
self, |
|
feat_dim=80, |
|
channels=512, |
|
emb_dim=192, |
|
global_context_att=False, |
|
sr=16000, |
|
ssl_model_path=None, |
|
): |
|
super().__init__() |
|
self.sr = sr |
|
|
|
if ssl_model_path is None: |
|
self.feature_extract = torch.hub.load("s3prl/s3prl", "wavlm_large") |
|
else: |
|
self.feature_extract = torch.hub.load( |
|
os.path.dirname(ssl_model_path), |
|
"wavlm_local", |
|
source="local", |
|
ckpt=ssl_model_path, |
|
) |
|
|
|
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( |
|
self.feature_extract.model.encoder.layers[23].self_attn, |
|
"fp32_attention", |
|
): |
|
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = ( |
|
False |
|
) |
|
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( |
|
self.feature_extract.model.encoder.layers[11].self_attn, |
|
"fp32_attention", |
|
): |
|
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = ( |
|
False |
|
) |
|
|
|
self.feat_num = self.get_feat_num() |
|
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) |
|
|
|
self.instance_norm = nn.InstanceNorm1d(feat_dim) |
|
|
|
self.channels = [channels] * 4 + [1536] |
|
|
|
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) |
|
self.layer2 = SE_Res2Block( |
|
self.channels[0], |
|
self.channels[1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=2, |
|
dilation=2, |
|
scale=8, |
|
se_bottleneck_dim=128, |
|
) |
|
self.layer3 = SE_Res2Block( |
|
self.channels[1], |
|
self.channels[2], |
|
kernel_size=3, |
|
stride=1, |
|
padding=3, |
|
dilation=3, |
|
scale=8, |
|
se_bottleneck_dim=128, |
|
) |
|
self.layer4 = SE_Res2Block( |
|
self.channels[2], |
|
self.channels[3], |
|
kernel_size=3, |
|
stride=1, |
|
padding=4, |
|
dilation=4, |
|
scale=8, |
|
se_bottleneck_dim=128, |
|
) |
|
|
|
|
|
cat_channels = channels * 3 |
|
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) |
|
self.pooling = AttentiveStatsPool( |
|
self.channels[-1], |
|
attention_channels=128, |
|
global_context_att=global_context_att, |
|
) |
|
self.bn = nn.BatchNorm1d(self.channels[-1] * 2) |
|
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) |
|
|
|
def get_feat_num(self): |
|
self.feature_extract.eval() |
|
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)] |
|
with torch.no_grad(): |
|
features = self.feature_extract(wav) |
|
select_feature = features["hidden_states"] |
|
if isinstance(select_feature, (list, tuple)): |
|
return len(select_feature) |
|
else: |
|
return 1 |
|
|
|
def get_feat(self, x): |
|
with torch.no_grad(): |
|
x = self.feature_extract([sample for sample in x]) |
|
|
|
x = x["hidden_states"] |
|
if isinstance(x, (list, tuple)): |
|
x = torch.stack(x, dim=0) |
|
else: |
|
x = x.unsqueeze(0) |
|
norm_weights = ( |
|
F.softmax(self.feature_weight, dim=-1) |
|
.unsqueeze(-1) |
|
.unsqueeze(-1) |
|
.unsqueeze(-1) |
|
) |
|
x = (norm_weights * x).sum(dim=0) |
|
x = torch.transpose(x, 1, 2) + 1e-6 |
|
|
|
x = self.instance_norm(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.get_feat(x) |
|
|
|
out1 = self.layer1(x) |
|
out2 = self.layer2(out1) |
|
out3 = self.layer3(out2) |
|
out4 = self.layer4(out3) |
|
|
|
out = torch.cat([out2, out3, out4], dim=1) |
|
out = F.relu(self.conv(out)) |
|
out = self.bn(self.pooling(out)) |
|
out = self.linear(out) |
|
|
|
return out |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
SIM = SpeakerSimilarity( |
|
sv_model_path=args.sv_model_path, ssl_model_path=args.ssl_model_path |
|
) |
|
score = SIM.score(args.eval_path, args.test_list) |
|
logging.info(f"SIM-o score: {score:.3f}") |
|
|