|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Calculate UTMOS score with automatic Mean Opinion Score (MOS) prediction system |
|
adapted from https://huggingface.co/spaces/sarulab-speech/UTMOS-demo |
|
|
|
# Download model checkpoints |
|
wget https://huggingface.co/spaces/sarulab-speech/UTMOS-demo/resolve/main/epoch%3D3-step%3D7459.ckpt -P model/huggingface/utmos/utmos.pt |
|
wget https://huggingface.co/spaces/sarulab-speech/UTMOS-demo/resolve/main/wav2vec_small.pt -P model/huggingface/utmos/wav2vec_small.pt |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
|
|
import fairseq |
|
import librosa |
|
import numpy as np |
|
import pytorch_lightning as pl |
|
import soundfile as sf |
|
import torch |
|
import torch.nn as nn |
|
from tqdm import tqdm |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--wav-path", type=str, help="path of the evaluated speech directory" |
|
) |
|
parser.add_argument( |
|
"--utmos-model-path", |
|
type=str, |
|
default="model/huggingface/utmos/utmos.pt", |
|
help="path of the UTMOS model", |
|
) |
|
parser.add_argument( |
|
"--ssl-model-path", |
|
type=str, |
|
default="model/huggingface/utmos/wav2vec_small.pt", |
|
help="path of the wav2vec SSL model", |
|
) |
|
return parser |
|
|
|
|
|
class UTMOSScore: |
|
"""Predicting score for each audio clip.""" |
|
|
|
def __init__(self, utmos_model_path, ssl_model_path): |
|
self.sample_rate = 16000 |
|
self.device = ( |
|
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
) |
|
self.model = ( |
|
BaselineLightningModule.load_from_checkpoint( |
|
utmos_model_path, ssl_model_path=ssl_model_path |
|
) |
|
.eval() |
|
.to(self.device) |
|
) |
|
|
|
def score(self, wavs: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
wavs: waveforms to be evaluated. When len(wavs) == 1 or 2, |
|
the model processes the input as a single audio clip. The model |
|
performs batch processing when len(wavs) == 3. |
|
""" |
|
if len(wavs.shape) == 1: |
|
out_wavs = wavs.unsqueeze(0).unsqueeze(0) |
|
elif len(wavs.shape) == 2: |
|
out_wavs = wavs.unsqueeze(0) |
|
elif len(wavs.shape) == 3: |
|
out_wavs = wavs |
|
else: |
|
raise ValueError("Dimension of input tensor needs to be <= 3.") |
|
bs = out_wavs.shape[0] |
|
batch = { |
|
"wav": out_wavs, |
|
"domains": torch.zeros(bs, dtype=torch.int).to(self.device), |
|
"judge_id": torch.ones(bs, dtype=torch.int).to(self.device) * 288, |
|
} |
|
with torch.no_grad(): |
|
output = self.model(batch) |
|
|
|
return output.mean(dim=1).squeeze(1).cpu().detach() * 2 + 3 |
|
|
|
def score_dir(self, dir, dtype="float32"): |
|
def _load_speech_task(fname, sample_rate): |
|
|
|
wav_data, sr = sf.read(fname, dtype=dtype) |
|
if sr != sample_rate: |
|
wav_data = librosa.resample( |
|
wav_data, orig_sr=sr, target_sr=self.sample_rate |
|
) |
|
wav_data = torch.from_numpy(wav_data) |
|
|
|
return wav_data |
|
|
|
score_lst = [] |
|
for fname in tqdm(os.listdir(dir)): |
|
speech = _load_speech_task(os.path.join(dir, fname), self.sample_rate) |
|
speech = speech.to(self.device) |
|
with torch.no_grad(): |
|
score = self.score(speech) |
|
score_lst.append(score.item()) |
|
return np.mean(score_lst) |
|
|
|
|
|
def load_ssl_model(ckpt_path="wav2vec_small.pt"): |
|
SSL_OUT_DIM = 768 |
|
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( |
|
[ckpt_path] |
|
) |
|
ssl_model = model[0] |
|
ssl_model.remove_pretraining_modules() |
|
return SSL_model(ssl_model, SSL_OUT_DIM) |
|
|
|
|
|
class BaselineLightningModule(pl.LightningModule): |
|
def __init__(self, ssl_model_path): |
|
super().__init__() |
|
self.construct_model(ssl_model_path) |
|
self.save_hyperparameters() |
|
|
|
def construct_model(self, ssl_model_path): |
|
self.feature_extractors = nn.ModuleList( |
|
[ |
|
load_ssl_model(ckpt_path=ssl_model_path), |
|
DomainEmbedding(3, 128), |
|
] |
|
) |
|
output_dim = sum( |
|
[ |
|
feature_extractor.get_output_dim() |
|
for feature_extractor in self.feature_extractors |
|
] |
|
) |
|
output_layers = [ |
|
LDConditioner(judge_dim=128, num_judges=3000, input_dim=output_dim) |
|
] |
|
output_dim = output_layers[-1].get_output_dim() |
|
output_layers.append( |
|
Projection( |
|
hidden_dim=2048, |
|
activation=torch.nn.ReLU(), |
|
range_clipping=False, |
|
input_dim=output_dim, |
|
) |
|
) |
|
|
|
self.output_layers = nn.ModuleList(output_layers) |
|
|
|
def forward(self, inputs): |
|
outputs = {} |
|
for feature_extractor in self.feature_extractors: |
|
outputs.update(feature_extractor(inputs)) |
|
x = outputs |
|
for output_layer in self.output_layers: |
|
x = output_layer(x, inputs) |
|
return x |
|
|
|
|
|
class SSL_model(nn.Module): |
|
def __init__(self, ssl_model, ssl_out_dim) -> None: |
|
super(SSL_model, self).__init__() |
|
self.ssl_model, self.ssl_out_dim = ssl_model, ssl_out_dim |
|
|
|
def forward(self, batch): |
|
wav = batch["wav"] |
|
wav = wav.squeeze(1) |
|
res = self.ssl_model(wav, mask=False, features_only=True) |
|
x = res["x"] |
|
return {"ssl-feature": x} |
|
|
|
def get_output_dim(self): |
|
return self.ssl_out_dim |
|
|
|
|
|
class DomainEmbedding(nn.Module): |
|
def __init__(self, n_domains, domain_dim) -> None: |
|
super().__init__() |
|
self.embedding = nn.Embedding(n_domains, domain_dim) |
|
self.output_dim = domain_dim |
|
|
|
def forward(self, batch): |
|
return {"domain-feature": self.embedding(batch["domains"])} |
|
|
|
def get_output_dim(self): |
|
return self.output_dim |
|
|
|
|
|
class LDConditioner(nn.Module): |
|
""" |
|
Conditions ssl output by listener embedding |
|
""" |
|
|
|
def __init__(self, input_dim, judge_dim, num_judges=None): |
|
super().__init__() |
|
self.input_dim = input_dim |
|
self.judge_dim = judge_dim |
|
self.num_judges = num_judges |
|
assert num_judges is not None |
|
self.judge_embedding = nn.Embedding(num_judges, self.judge_dim) |
|
|
|
|
|
self.decoder_rnn = nn.LSTM( |
|
input_size=self.input_dim + self.judge_dim, |
|
hidden_size=512, |
|
num_layers=1, |
|
batch_first=True, |
|
bidirectional=True, |
|
) |
|
self.out_dim = self.decoder_rnn.hidden_size * 2 |
|
|
|
def get_output_dim(self): |
|
return self.out_dim |
|
|
|
def forward(self, x, batch): |
|
judge_ids = batch["judge_id"] |
|
if "phoneme-feature" in x.keys(): |
|
concatenated_feature = torch.cat( |
|
( |
|
x["ssl-feature"], |
|
x["phoneme-feature"] |
|
.unsqueeze(1) |
|
.expand(-1, x["ssl-feature"].size(1), -1), |
|
), |
|
dim=2, |
|
) |
|
else: |
|
concatenated_feature = x["ssl-feature"] |
|
if "domain-feature" in x.keys(): |
|
concatenated_feature = torch.cat( |
|
( |
|
concatenated_feature, |
|
x["domain-feature"] |
|
.unsqueeze(1) |
|
.expand(-1, concatenated_feature.size(1), -1), |
|
), |
|
dim=2, |
|
) |
|
if judge_ids is not None: |
|
concatenated_feature = torch.cat( |
|
( |
|
concatenated_feature, |
|
self.judge_embedding(judge_ids) |
|
.unsqueeze(1) |
|
.expand(-1, concatenated_feature.size(1), -1), |
|
), |
|
dim=2, |
|
) |
|
decoder_output, (h, c) = self.decoder_rnn(concatenated_feature) |
|
return decoder_output |
|
|
|
|
|
class Projection(nn.Module): |
|
def __init__(self, input_dim, hidden_dim, activation, range_clipping=False): |
|
super(Projection, self).__init__() |
|
self.range_clipping = range_clipping |
|
output_dim = 1 |
|
if range_clipping: |
|
self.proj = nn.Tanh() |
|
|
|
self.net = nn.Sequential( |
|
nn.Linear(input_dim, hidden_dim), |
|
activation, |
|
nn.Dropout(0.3), |
|
nn.Linear(hidden_dim, output_dim), |
|
) |
|
self.output_dim = output_dim |
|
|
|
def forward(self, x, batch): |
|
output = self.net(x) |
|
|
|
|
|
if self.range_clipping: |
|
return self.proj(output) * 2.0 + 3 |
|
else: |
|
return output |
|
|
|
def get_output_dim(self): |
|
return self.output_dim |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
UTMOS = UTMOSScore( |
|
utmos_model_path=args.utmos_model_path, |
|
ssl_model_path=args.ssl_model_path, |
|
) |
|
score = UTMOS.score_dir(args.wav_path) |
|
logging.info(f"UTMOS score: {score:.2f}") |
|
|