import argparse import collections import json import logging import os import socket import subprocess import sys from collections import defaultdict from datetime import datetime from pathlib import Path from typing import Any, Dict, List, Tuple, Union import torch from torch import distributed as dist from torch import nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter Pathlike = Union[str, Path] class AttributeDict(dict): def __getattr__(self, key): if key in self: return self[key] raise AttributeError(f"No such attribute '{key}'") def __setattr__(self, key, value): self[key] = value def __delattr__(self, key): if key in self: del self[key] return raise AttributeError(f"No such attribute '{key}'") def __str__(self, indent: int = 2): tmp = {} for k, v in self.items(): # PosixPath is ont JSON serializable if isinstance(v, (Path, torch.device, torch.dtype)): v = str(v) tmp[k] = v return json.dumps(tmp, indent=indent, sort_keys=True) class MetricsTracker(collections.defaultdict): def __init__(self): # Passing the type 'int' to the base-class constructor # makes undefined items default to int() which is zero. # This class will play a role as metrics tracker. # It can record many metrics, including but not limited to loss. super(MetricsTracker, self).__init__(int) def __add__(self, other: "MetricsTracker") -> "MetricsTracker": ans = MetricsTracker() for k, v in self.items(): ans[k] = v for k, v in other.items(): ans[k] = ans[k] + v return ans def __mul__(self, alpha: float) -> "MetricsTracker": ans = MetricsTracker() for k, v in self.items(): ans[k] = v * alpha return ans def __str__(self) -> str: ans_frames = "" ans_utterances = "" for k, v in self.norm_items(): norm_value = "%.4g" % v if "utt_" not in k: ans_frames += str(k) + "=" + str(norm_value) + ", " else: ans_utterances += str(k) + "=" + str(norm_value) if k == "utt_duration": ans_utterances += " frames, " elif k == "utt_pad_proportion": ans_utterances += ", " else: raise ValueError(f"Unexpected key: {k}") frames = "%.2f" % self["frames"] ans_frames += "over " + str(frames) + " frames. " if ans_utterances != "": utterances = "%.2f" % self["utterances"] ans_utterances += "over " + str(utterances) + " utterances." return ans_frames + ans_utterances def norm_items(self) -> List[Tuple[str, float]]: """ Returns a list of pairs, like: [('ctc_loss', 0.1), ('att_loss', 0.07)] """ num_frames = self["frames"] if "frames" in self else 1 num_utterances = self["utterances"] if "utterances" in self else 1 ans = [] for k, v in self.items(): if k == "frames" or k == "utterances": continue norm_value = ( float(v) / num_frames if "utt_" not in k else float(v) / num_utterances ) ans.append((k, norm_value)) return ans def reduce(self, device): """ Reduce using torch.distributed, which I believe ensures that all processes get the total. """ keys = sorted(self.keys()) s = torch.tensor([float(self[k]) for k in keys], device=device) dist.all_reduce(s, op=dist.ReduceOp.SUM) for k, v in zip(keys, s.cpu().tolist()): self[k] = v def write_summary( self, tb_writer: SummaryWriter, prefix: str, batch_idx: int, ) -> None: """Add logging information to a TensorBoard writer. Args: tb_writer: a TensorBoard writer prefix: a prefix for the name of the loss, e.g. "train/valid_", or "train/current_" batch_idx: The current batch index, used as the x-axis of the plot. """ for k, v in self.norm_items(): tb_writer.add_scalar(prefix + k, v, batch_idx) def setup_dist( rank=None, world_size=None, master_port=None, use_ddp_launch=False, master_addr=None, ): """ rank and world_size are used only if use_ddp_launch is False. """ if "MASTER_ADDR" not in os.environ: os.environ["MASTER_ADDR"] = ( "localhost" if master_addr is None else str(master_addr) ) if "MASTER_PORT" not in os.environ: os.environ["MASTER_PORT"] = "12354" if master_port is None else str(master_port) if use_ddp_launch is False: dist.init_process_group("nccl", rank=rank, world_size=world_size) torch.cuda.set_device(rank) else: dist.init_process_group("nccl") def cleanup_dist(): dist.destroy_process_group() def prepare_input( params: AttributeDict, batch: dict, device: torch.device, return_tokens: bool = True, return_feature: bool = True, return_audio: bool = False, ): """ Parse the features and targets of the current batch. Args: params: It is returned by :func:`get_params`. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. device: The device of Tensor. """ return_list = [] if return_tokens: return_list += [batch["tokens"]] if return_feature: features = batch["features"].to(device) features_lens = batch["features_lens"].to(device) return_list += [features * params.feat_scale, features_lens] if return_audio: return_list += [batch["audio"], batch["audio_lens"]] return return_list def prepare_avg_tokens_durations(features_lens, tokens_lens): tokens_durations = [] for i in range(len(features_lens)): utt_duration = features_lens[i] avg_token_duration = utt_duration // tokens_lens[i] tokens_durations.append([avg_token_duration] * tokens_lens[i]) return tokens_durations def pad_labels(y: List[List[int]], pad_id: int, device: torch.device): """ Pad the transcripts to the same length with zeros. Args: y: the transcripts, which is a list of a list Returns: Return a Tensor of padded transcripts. """ y = [token_ids + [pad_id] for token_ids in y] length = max([len(token_ids) for token_ids in y]) y = [token_ids + [pad_id] * (length - len(token_ids)) for token_ids in y] return torch.tensor(y, dtype=torch.int64, device=device) def get_tokens_index(durations: List[List[int]], num_frames: int) -> torch.Tensor: """ Gets position in the transcript for each frame, i.e. the position in the symbol-sequence to look up. Args: durations: Duration of each token in transcripts. num_frames: The maximum frame length of the current batch. Returns: Return a Tensor of shape (batch_size, num_frames) """ durations = [x + [num_frames - sum(x)] for x in durations] batch_size = len(durations) ans = torch.zeros(batch_size, num_frames, dtype=torch.int64) for b in range(batch_size): this_dur = durations[b] cur_frame = 0 for i, d in enumerate(this_dur): ans[b, cur_frame : cur_frame + d] = i cur_frame += d assert cur_frame == num_frames, (cur_frame, num_frames) return ans def to_int_tuple(s: Union[str, int]): if isinstance(s, int): return (s,) return tuple(map(int, s.split(","))) def get_adjusted_batch_count(params: AttributeDict) -> float: # returns the number of batches we would have used so far if we had used the # reference duration. This is for purposes of set_batch_count(). return ( params.batch_idx_train * (params.max_duration * params.world_size) / params.ref_duration ) def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: if isinstance(model, DDP): # get underlying nn.Module model = model.module for name, module in model.named_modules(): if hasattr(module, "batch_count"): module.batch_count = batch_count if hasattr(module, "name"): module.name = name def condition_time_mask( features_lens: torch.Tensor, mask_percent: Tuple[float, float], max_len: int = 0, ) -> torch.Tensor: """ Apply Time masking. Args: features_lens: input tensor of shape ``(B)`` mask_size: the width size for masking. max_len: the maximum length of the mask. Returns: Return a 2-D bool tensor (B, T), where masked positions are filled with `True` and non-masked positions are filled with `False`. """ mask_size = ( torch.zeros_like(features_lens, dtype=torch.float32).uniform_(*mask_percent) * features_lens ).to(torch.int64) mask_starts = ( torch.rand_like(mask_size, dtype=torch.float32) * (features_lens - mask_size) ).to(torch.int64) mask_ends = mask_starts + mask_size max_len = max(max_len, features_lens.max()) seq_range = torch.arange(0, max_len, device=features_lens.device) mask = (seq_range[None, :] >= mask_starts[:, None]) & ( seq_range[None, :] < mask_ends[:, None] ) return mask def condition_time_mask_suffix( features_lens: torch.Tensor, mask_percent: Tuple[float, float], max_len: int = 0, ) -> torch.Tensor: """ Apply Time masking, mask from the end time index. Args: features_lens: input tensor of shape ``(B)`` mask_size: the width size for masking. max_len: the maximum length of the mask. Returns: Return a 2-D bool tensor (B, T), where masked positions are filled with `True` and non-masked positions are filled with `False`. """ mask_size = ( torch.zeros_like(features_lens, dtype=torch.float32).uniform_(*mask_percent) * features_lens ).to(torch.int64) mask_starts = ( torch.ones_like(mask_size, dtype=torch.float32) * (features_lens - mask_size) ).to(torch.int64) mask_ends = mask_starts + mask_size max_len = max(max_len, features_lens.max()) seq_range = torch.arange(0, max_len, device=features_lens.device) mask = (seq_range[None, :] >= mask_starts[:, None]) & ( seq_range[None, :] < mask_ends[:, None] ) return mask def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: """ Args: lengths: A 1-D tensor containing sentence lengths. max_len: The length of masks. Returns: Return a 2-D bool tensor, where masked positions are filled with `True` and non-masked positions are filled with `False`. >>> lengths = torch.tensor([1, 3, 2, 5]) >>> make_pad_mask(lengths) tensor([[False, True, True, True, True], [False, False, False, True, True], [False, False, True, True, True], [False, False, False, False, False]]) """ assert lengths.ndim == 1, lengths.ndim max_len = max(max_len, lengths.max()) n = lengths.size(0) seq_range = torch.arange(0, max_len, device=lengths.device) expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len) return expaned_lengths >= lengths.unsqueeze(-1) def str2bool(v): """Used in argparse.ArgumentParser.add_argument to indicate that a type is a bool type and user can enter - yes, true, t, y, 1, to represent True - no, false, f, n, 0, to represent False See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa """ if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def setup_logger( log_filename: Pathlike, log_level: str = "info", use_console: bool = True, ) -> None: """Setup log level. Args: log_filename: The filename to save the log. log_level: The log level to use, e.g., "debug", "info", "warning", "error", "critical" use_console: True to also print logs to console. """ now = datetime.now() date_time = now.strftime("%Y-%m-%d-%H-%M-%S") if dist.is_available() and dist.is_initialized(): world_size = dist.get_world_size() rank = dist.get_rank() formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s" # noqa log_filename = f"{log_filename}-{date_time}-{rank}" else: formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" log_filename = f"{log_filename}-{date_time}" os.makedirs(os.path.dirname(log_filename), exist_ok=True) level = logging.ERROR if log_level == "debug": level = logging.DEBUG elif log_level == "info": level = logging.INFO elif log_level == "warning": level = logging.WARNING elif log_level == "critical": level = logging.CRITICAL logging.basicConfig( filename=log_filename, format=formatter, level=level, filemode="w", force=True, ) if use_console: console = logging.StreamHandler() console.setLevel(level) console.setFormatter(logging.Formatter(formatter)) logging.getLogger("").addHandler(console) def get_git_sha1(): try: git_commit = ( subprocess.run( ["git", "rev-parse", "--short", "HEAD"], check=True, stdout=subprocess.PIPE, ) .stdout.decode() .rstrip("\n") .strip() ) dirty_commit = ( len( subprocess.run( ["git", "diff", "--shortstat"], check=True, stdout=subprocess.PIPE, ) .stdout.decode() .rstrip("\n") .strip() ) > 0 ) git_commit = git_commit + "-dirty" if dirty_commit else git_commit + "-clean" except: # noqa return None return git_commit def get_git_date(): try: git_date = ( subprocess.run( ["git", "log", "-1", "--format=%ad", "--date=local"], check=True, stdout=subprocess.PIPE, ) .stdout.decode() .rstrip("\n") .strip() ) except: # noqa return None return git_date def get_git_branch_name(): try: git_date = ( subprocess.run( ["git", "rev-parse", "--abbrev-ref", "HEAD"], check=True, stdout=subprocess.PIPE, ) .stdout.decode() .rstrip("\n") .strip() ) except: # noqa return None return git_date def get_env_info() -> Dict[str, Any]: """Get the environment information.""" return { "torch-version": str(torch.__version__), "torch-cuda-available": torch.cuda.is_available(), "torch-cuda-version": torch.version.cuda, "python-version": sys.version[:4], "zipvoice-git-branch": get_git_branch_name(), "zipvoice-git-sha1": get_git_sha1(), "zipvoice-git-date": get_git_date(), "zipvoice-path": str(Path(__file__).resolve().parent.parent), "hostname": socket.gethostname(), "IP address": socket.gethostbyname(socket.gethostname()), } def get_parameter_groups_with_lrs( model: nn.Module, lr: float, include_names: bool = False, freeze_modules: List[str] = [], ) -> List[dict]: """ This is for use with the ScaledAdam optimizers (more recent versions that accept lists of named-parameters; we can, if needed, create a version without the names). It provides a way to specify learning-rate scales inside the module, so that if any nn.Module in the hierarchy has a floating-point parameter 'lr_scale', it will scale the LR of any parameters inside that module or its submodules. Note: you can set module parameters outside the __init__ function, e.g.: >>> a = nn.Linear(10, 10) >>> a.lr_scale = 0.5 Returns: a list of dicts, of the following form: if include_names == False: [ { 'params': [ tensor1, tensor2, ... ], 'lr': 0.01 }, { 'params': [ tensor3, tensor4, ... ], 'lr': 0.005 }, ... ] if include_names == true: [ { 'named_params': [ (name1, tensor1, (name2, tensor2), ... ], 'lr': 0.01 }, { 'named_params': [ (name3, tensor3), (name4, tensor4), ... ], 'lr': 0.005 }, ... ] """ # flat_lr_scale just contains the lr_scale explicitly specified # for each prefix of the name, e.g. 'encoder.layers.3', these need # to be multiplied for all prefix of the name of any given parameter. flat_lr_scale = defaultdict(lambda: 1.0) names = [] for name, m in model.named_modules(): names.append(name) if hasattr(m, "lr_scale"): flat_lr_scale[name] = m.lr_scale # lr_to_parames is a dict from learning rate (floating point) to: if # include_names == true, a list of (name, parameter) for that learning rate; # otherwise a list of parameters for that learning rate. lr_to_params = defaultdict(list) for name, parameter in model.named_parameters(): split_name = name.split(".") # caution: as a special case, if the name is '', split_name will be [ '' ]. prefix = split_name[0] if prefix == "module": # DDP module_name = split_name[1] if module_name in freeze_modules: logging.info(f"Remove {name} from parameters") continue else: if prefix in freeze_modules: logging.info(f"Remove {name} from parameters") continue cur_lr = lr * flat_lr_scale[prefix] if prefix != "": cur_lr *= flat_lr_scale[""] for part in split_name[1:]: prefix = ".".join([prefix, part]) cur_lr *= flat_lr_scale[prefix] lr_to_params[cur_lr].append((name, parameter) if include_names else parameter) if include_names: return [{"named_params": pairs, "lr": lr} for lr, pairs in lr_to_params.items()] else: return [{"params": params, "lr": lr} for lr, params in lr_to_params.items()]