import torch import torch.nn as nn import math class EncoderProjectorConcat(nn.Module): def __init__(self, config): super().__init__() self.k = config.speech_encoder_ds_rate self.encoder_dim = config.speech_encoder_hidden_size self.llm_dim = config.hidden_size self.linear1 = nn.Linear(self.encoder_dim * self.k, 2048) self.relu = nn.ReLU() self.linear2 = nn.Linear(2048, config.hidden_size) embed_std = 1 / math.sqrt(config.hidden_size) self.speech_newline = nn.Parameter( torch.randn(config.hidden_size) * embed_std ) self.speech_begin = nn.Parameter( torch.randn(config.hidden_size) * embed_std ) self.speech_end = nn.Parameter( torch.randn(config.hidden_size) * embed_std ) def forward(self, x): batch_size, seq_len, dim = x.size() num_frames_to_discard = seq_len % self.k if num_frames_to_discard > 0: x = x[:, :-num_frames_to_discard, :] seq_len = x.size(1) x = x.contiguous() x = x.view(batch_size, seq_len // self.k, dim * self.k) x = self.linear1(x) x = self.relu(x) x = self.linear2(x) x = torch.cat([ x, self.speech_newline.reshape(1, 1, -1).expand(batch_size, 1, -1).to(x.dtype) ], dim=1) begin = self.speech_begin.reshape(1, -1).to(x.dtype) end = self.speech_end.reshape(1, -1).to(x.dtype) x = x.flatten(0, 1) x = torch.cat([begin, x, end], dim=0) # x = x.flatten(0, 1) return x