""" A model worker executes the model. """ import os, sys os.environ['LOWRES_RESIZE'] = '384x32' os.environ['HIGHRES_BASE'] = '0x32' os.environ['VIDEO_RESIZE'] = "0x64" os.environ['VIDEO_MAXRES'] = "480" os.environ['VIDEO_MINRES'] = "288" os.environ['MAXRES'] = '1536' os.environ['MINRES'] = '0' os.environ['REGIONAL_POOL'] = '2x' os.environ['FORCE_NO_DOWNSAMPLE'] = '1' os.environ['LOAD_VISION_EARLY'] = '1' os.environ['SKIP_LOAD_VIT'] = '1' sys.path.append('/mnt/lzy/Ola') import argparse import asyncio import json import time import threading import uuid from fastapi import FastAPI, Request, BackgroundTasks from fastapi.responses import StreamingResponse import requests import torch import uvicorn from functools import partial from ola.constants import WORKER_HEART_BEAT_INTERVAL from ola.utils import (build_logger, server_error_msg, pretty_print_semaphore) from ola.model.builder import load_pretrained_model from ola.mm_utils import process_anyres_highres_image_genli, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria from ola.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from transformers import TextIteratorStreamer from threading import Thread GB = 1 << 30 worker_id = str(uuid.uuid4())[:6] logger = build_logger("model_worker", f"model_worker_{worker_id}.log") global_counter = 0 model_semaphore = None def heart_beat_worker(controller): while True: time.sleep(WORKER_HEART_BEAT_INTERVAL) controller.send_heart_beat() class ModelWorker: def __init__(self, controller_addr, worker_addr, worker_id, no_register, model_path, model_base, model_name, load_8bit, load_4bit): self.controller_addr = controller_addr self.worker_addr = worker_addr self.worker_id = worker_id if model_path.endswith("/"): model_path = model_path[:-1] if model_name is None: model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): self.model_name = model_paths[-2] + "_" + model_paths[-1] else: self.model_name = model_paths[-1] else: self.model_name = model_name logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( model_path, None, self.model_name, load_8bit, load_4bit, device_map='cuda:0') self.model = self.model.eval() self.model = self.model.bfloat16() self.is_multimodal = 'ola' in self.model_name.lower() if not no_register: self.register_to_controller() self.heart_beat_thread = threading.Thread( target=heart_beat_worker, args=(self,)) self.heart_beat_thread.start() def register_to_controller(self): logger.info("Register to controller") url = self.controller_addr + "/register_worker" data = { "worker_name": self.worker_addr, "check_heart_beat": True, "worker_status": self.get_status() } r = requests.post(url, json=data) assert r.status_code == 200, f"Failed to register to controller: {r.text}" def send_heart_beat(self): logger.info(f"Send heart beat. Models: {[self.model_name]}. " f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " f"global_counter: {global_counter}") print('skip heart beat') return url = self.controller_addr + "/receive_heart_beat" while True: try: ret = requests.post(url, json={ "worker_name": self.worker_addr, "queue_length": self.get_queue_length()}, timeout=5) exist = ret.json()["exist"] break except requests.exceptions.RequestException as e: logger.error(f"heart beat error: {e}") time.sleep(5) if not exist: self.register_to_controller() def get_queue_length(self): if model_semaphore is None: return 0 else: return args.limit_model_concurrency - model_semaphore._value + (len( model_semaphore._waiters) if model_semaphore._waiters is not None else 0) def get_status(self): return { "model_names": [self.model_name], "speed": 1, "queue_length": self.get_queue_length(), } @torch.inference_mode() def generate_stream(self, params): tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor prompt = params["prompt"] ori_prompt = prompt images = params.get("images", None) num_image_tokens = 0 if images is not None and len(images) > 0 and self.is_multimodal: if len(images) > 0: if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): raise ValueError("Number of images does not match number of tokens in prompt") images = [load_image_from_base64(image) for image in images] image_sizes = [image.size for image in images] logger.info(f"image_sizes: {image_sizes}") image_tensor, image_highres_tensor = process_anyres_highres_image_genli(images, image_processor, model.config) if type(image_tensor) is list: image_tensor = [image_.to(self.model.device, dtype=torch.bfloat16) for image_ in image_tensor] else: image_tensor = image_tensor.to(self.model.device, dtype=torch.bfloat16) if type(image_highres_tensor) is list: image_highres_tensor = [image_.to(self.model.device, dtype=torch.bfloat16) for image_ in image_highres_tensor] else: image_highres_tensor = image_highres_tensor.to(self.model.device, dtype=torch.bfloat16) replace_token = DEFAULT_IMAGE_TOKEN if getattr(self.model.config, 'mm_use_im_start_end', False): replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) # num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches else: images = None image_sizes = None image_args = {"images": images, "images_highres": image_highres_tensor, "image_sizes": image_sizes} else: images = None image_args = {} temperature = float(params.get("temperature", 1.0)) top_p = float(params.get("top_p", 1.0)) max_context_length = getattr(model.config, 'max_position_embeddings', 2048) max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) stop_str = params.get("stop", None) stop_str = '<|im_end|>' if stop_str is None else stop_str do_sample = True if temperature > 0.001 else False input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) # max_new_tokens = 1024 # min(max_new_tokens, max_context_length - input_ids.shape[-1] - 576) if max_new_tokens < 1: yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" return thread = Thread(target=model.generate, kwargs=dict( inputs=input_ids, do_sample=do_sample, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, streamer=streamer, # stopping_criteria=[stopping_criteria], use_cache=True, modalities=['image'] **image_args )) thread.start() start_time = time.time() generated_text = ori_prompt for new_text in streamer: generated_text += new_text if generated_text.endswith(stop_str): generated_text = generated_text[:-len(stop_str)] yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" end_time = time.time() new_generated = generated_text[len(ori_prompt):] new_generated_tokens = tokenizer(new_generated).input_ids token_per_second = len(new_generated_tokens) / (end_time - start_time) print(f"token_per_second: {token_per_second}") def generate_stream_gate(self, params): # try: for x in self.generate_stream(params): yield x # except ValueError as e: # print("Caught ValueError:", e) # ret = { # "text": server_error_msg, # "error_code": 1, # } # yield json.dumps(ret).encode() + b"\0" # except torch.cuda.CudaError as e: # print("Caught torch.cuda.CudaError:", e) # ret = { # "text": server_error_msg, # "error_code": 1, # } # yield json.dumps(ret).encode() + b"\0" # except Exception as e: # print("Caught Unknown Error", e) # ret = { # "text": server_error_msg, # "error_code": 1, # } # yield json.dumps(ret).encode() + b"\0" app = FastAPI() def release_model_semaphore(fn=None): model_semaphore.release() if fn is not None: fn() @app.post("/worker_generate_stream") async def generate_stream(request: Request): global model_semaphore, global_counter global_counter += 1 params = await request.json() if model_semaphore is None: model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) await model_semaphore.acquire() worker.send_heart_beat() generator = worker.generate_stream_gate(params) background_tasks = BackgroundTasks() background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) return StreamingResponse(generator, background=background_tasks) @app.post("/worker_get_status") async def get_status(request: Request): return worker.get_status() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default=21002) parser.add_argument("--worker-address", type=str, default="http://0.0.0.0:21002") parser.add_argument("--controller-address", type=str, default="http://0.0.0.0:12345") parser.add_argument("--model-path", type=str, default="/mnt/lzy/ola-model/ola-7b") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--model-name", type=str) parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") parser.add_argument("--limit-model-concurrency", type=int, default=5) parser.add_argument("--stream-interval", type=int, default=1) parser.add_argument("--no-register", action="store_true") parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") args = parser.parse_args() logger.info(f"args: {args}") if args.multi_modal: logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") worker = ModelWorker(args.controller_address, args.worker_address, worker_id, args.no_register, args.model_path, args.model_base, args.model_name, args.load_8bit, args.load_4bit) uvicorn.run(app, host=args.host, port=args.port, log_level="info")