Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,14 +14,12 @@ from serve_constants import html_header, bibtext, learn_more_markdown, tos_markd
|
|
14 |
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
|
16 |
MODEL_ID = "TIGER-Lab/PixelReasoner-RL-v1"
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
example_text = "What kind of restaurant is it?"
|
21 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True,
|
22 |
-
|
23 |
-
max_pixels=512*28*28,
|
24 |
-
)
|
25 |
model = AutoModelForImageTextToText.from_pretrained(
|
26 |
MODEL_ID,
|
27 |
trust_remote_code=True,
|
@@ -172,6 +170,7 @@ def model_inference(input_dict, history):
|
|
172 |
# Create the full path to the folder
|
173 |
folder_path = os.path.join(current_path, folder_to_find)
|
174 |
print('files', files)
|
|
|
175 |
imagelist = rawimagelist = current_message_images = [load_image(image) for image in files]
|
176 |
all_images += current_message_images
|
177 |
messages.append({
|
@@ -183,7 +182,7 @@ def model_inference(input_dict, history):
|
|
183 |
})
|
184 |
|
185 |
print(messages)
|
186 |
-
|
187 |
complete_assistant_response_for_gradio = []
|
188 |
while True:
|
189 |
"""
|
@@ -199,15 +198,9 @@ def model_inference(input_dict, history):
|
|
199 |
|
200 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
|
201 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, temperature=0.1, top_p=0.95, top_k=50)
|
202 |
-
# import pdb; pdb.set_trace()
|
203 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
204 |
thread.start()
|
205 |
|
206 |
-
# buffer = ""
|
207 |
-
# for new_text in streamer:
|
208 |
-
# buffer += new_text
|
209 |
-
# yield buffer
|
210 |
-
# print(buffer)
|
211 |
current_model_output_segment = "" # Text generated in this specific model call
|
212 |
toolflag = False
|
213 |
for new_text_chunk in streamer:
|
@@ -226,18 +219,14 @@ def model_inference(input_dict, history):
|
|
226 |
processed_segment = current_model_output_segment.split("<|im_end|>", 1)[0] if "<|im_end|>" in current_model_output_segment else current_model_output_segment
|
227 |
|
228 |
# Append this processed segment to the cumulative display string for Gradio
|
229 |
-
# complete_assistant_response_for_gradio += processed_segment + "\n\n"
|
230 |
complete_assistant_response_for_gradio += [processed_segment + "\n\n"]
|
231 |
-
# print(f"this one: {complete_assistant_response_for_gradio}")
|
232 |
yield complete_assistant_response_for_gradio # Ensure the fully processed segment is yielded to Gradio
|
233 |
|
234 |
|
235 |
# Check for tool call in the *just generated* segment
|
236 |
qatext_for_tool_check = processed_segment
|
237 |
require_tool = tool_end in qatext_for_tool_check and tool_start in qatext_for_tool_check
|
238 |
-
|
239 |
-
# print(f"Segment from model: \"{qatext_for_tool_check[:200]}...\", Requires tool: {require_tool}")
|
240 |
-
|
241 |
if require_tool:
|
242 |
|
243 |
tool_params = parse_last_tool(qatext_for_tool_check)
|
@@ -252,8 +241,6 @@ def model_inference(input_dict, history):
|
|
252 |
print(raw_result)
|
253 |
proc_img = raw_result
|
254 |
all_images += [proc_img]
|
255 |
-
# complete_assistant_response_for_gradio += [(proc_img, "Visual Operation Result")]
|
256 |
-
# yield complete_assistant_response_for_gradio # Update Gradio display
|
257 |
|
258 |
new_piece = dict(role='user', content=[
|
259 |
dict(type='text', text="\nHere is the cropped image (Image Size: {}x{}):".format(proc_img.size[0], proc_img.size[1])),
|
@@ -261,7 +248,6 @@ def model_inference(input_dict, history):
|
|
261 |
]
|
262 |
)
|
263 |
messages.append(new_piece)
|
264 |
-
# print(messages)
|
265 |
# complete_assistant_response_for_gradio += f"\n<b>Analyzing Operation Result ...</b> @region(size={proc_img.size[0]}x{proc_img.size[1]})\n\n"
|
266 |
complete_assistant_response_for_gradio += [f"\n<b>Analyzing Operation Result ...</b> @region(size={proc_img.size[0]}x{proc_img.size[1]})\n\n"]
|
267 |
yield complete_assistant_response_for_gradio # Update Gradio display
|
@@ -272,7 +258,13 @@ def model_inference(input_dict, history):
|
|
272 |
|
273 |
with gr.Blocks() as demo:
|
274 |
examples = [
|
275 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
]
|
277 |
|
278 |
gr.HTML(html_header)
|
|
|
14 |
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
|
16 |
MODEL_ID = "TIGER-Lab/PixelReasoner-RL-v1"
|
17 |
+
example_image = f"{cur_dir}/example_images/1.jpg"
|
18 |
+
|
19 |
+
print(example_image)
|
20 |
example_text = "What kind of restaurant is it?"
|
21 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True,
|
22 |
+
max_pixels=512*28*28)
|
|
|
|
|
23 |
model = AutoModelForImageTextToText.from_pretrained(
|
24 |
MODEL_ID,
|
25 |
trust_remote_code=True,
|
|
|
170 |
# Create the full path to the folder
|
171 |
folder_path = os.path.join(current_path, folder_to_find)
|
172 |
print('files', files)
|
173 |
+
|
174 |
imagelist = rawimagelist = current_message_images = [load_image(image) for image in files]
|
175 |
all_images += current_message_images
|
176 |
messages.append({
|
|
|
182 |
})
|
183 |
|
184 |
print(messages)
|
185 |
+
|
186 |
complete_assistant_response_for_gradio = []
|
187 |
while True:
|
188 |
"""
|
|
|
198 |
|
199 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
|
200 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, temperature=0.1, top_p=0.95, top_k=50)
|
|
|
201 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
202 |
thread.start()
|
203 |
|
|
|
|
|
|
|
|
|
|
|
204 |
current_model_output_segment = "" # Text generated in this specific model call
|
205 |
toolflag = False
|
206 |
for new_text_chunk in streamer:
|
|
|
219 |
processed_segment = current_model_output_segment.split("<|im_end|>", 1)[0] if "<|im_end|>" in current_model_output_segment else current_model_output_segment
|
220 |
|
221 |
# Append this processed segment to the cumulative display string for Gradio
|
|
|
222 |
complete_assistant_response_for_gradio += [processed_segment + "\n\n"]
|
|
|
223 |
yield complete_assistant_response_for_gradio # Ensure the fully processed segment is yielded to Gradio
|
224 |
|
225 |
|
226 |
# Check for tool call in the *just generated* segment
|
227 |
qatext_for_tool_check = processed_segment
|
228 |
require_tool = tool_end in qatext_for_tool_check and tool_start in qatext_for_tool_check
|
229 |
+
|
|
|
|
|
230 |
if require_tool:
|
231 |
|
232 |
tool_params = parse_last_tool(qatext_for_tool_check)
|
|
|
241 |
print(raw_result)
|
242 |
proc_img = raw_result
|
243 |
all_images += [proc_img]
|
|
|
|
|
244 |
|
245 |
new_piece = dict(role='user', content=[
|
246 |
dict(type='text', text="\nHere is the cropped image (Image Size: {}x{}):".format(proc_img.size[0], proc_img.size[1])),
|
|
|
248 |
]
|
249 |
)
|
250 |
messages.append(new_piece)
|
|
|
251 |
# complete_assistant_response_for_gradio += f"\n<b>Analyzing Operation Result ...</b> @region(size={proc_img.size[0]}x{proc_img.size[1]})\n\n"
|
252 |
complete_assistant_response_for_gradio += [f"\n<b>Analyzing Operation Result ...</b> @region(size={proc_img.size[0]}x{proc_img.size[1]})\n\n"]
|
253 |
yield complete_assistant_response_for_gradio # Update Gradio display
|
|
|
258 |
|
259 |
with gr.Blocks() as demo:
|
260 |
examples = [
|
261 |
+
[
|
262 |
+
{"text": example_text,
|
263 |
+
"files": [
|
264 |
+
example_image
|
265 |
+
]
|
266 |
+
}
|
267 |
+
]
|
268 |
]
|
269 |
|
270 |
gr.HTML(html_header)
|