Spaces:
Running
Running
| import os | |
| import torch | |
| from collections import OrderedDict | |
| logs_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "logs") | |
| def replace_keys_in_dict(d, old_key_part, new_key_part): | |
| # Use OrderedDict if the original is an OrderedDict | |
| if isinstance(d, OrderedDict): | |
| updated_dict = OrderedDict() | |
| else: | |
| updated_dict = {} | |
| for key, value in d.items(): | |
| # Replace the key part if found | |
| new_key = key.replace(old_key_part, new_key_part) | |
| # If the value is a dictionary, apply the function recursively | |
| if isinstance(value, dict): | |
| value = replace_keys_in_dict(value, old_key_part, new_key_part) | |
| updated_dict[new_key] = value | |
| return updated_dict | |
| def save_final(ckpt, sr, if_f0, name, epoch, version, hps): | |
| try: | |
| pth_file = f"{name}_{epoch}e.pth" | |
| pth_file_path = os.path.join("logs", pth_file) | |
| pth_file_old_version_path = os.path.join("logs", f"{pth_file}_old_version.pth") | |
| opt = OrderedDict( | |
| weight={ | |
| key: value.half() for key, value in ckpt.items() if "enc_q" not in key | |
| } | |
| ) | |
| opt["config"] = [ | |
| hps.data.filter_length // 2 + 1, | |
| 32, | |
| hps.model.inter_channels, | |
| hps.model.hidden_channels, | |
| hps.model.filter_channels, | |
| hps.model.n_heads, | |
| hps.model.n_layers, | |
| hps.model.kernel_size, | |
| hps.model.p_dropout, | |
| hps.model.resblock, | |
| hps.model.resblock_kernel_sizes, | |
| hps.model.resblock_dilation_sizes, | |
| hps.model.upsample_rates, | |
| hps.model.upsample_initial_channel, | |
| hps.model.upsample_kernel_sizes, | |
| hps.model.spk_embed_dim, | |
| hps.model.gin_channels, | |
| hps.data.sampling_rate, | |
| ] | |
| opt["info"], opt["sr"], opt["f0"], opt["version"] = epoch, sr, if_f0, version | |
| torch.save(opt, pth_file_path) | |
| model = torch.load(pth_file_path, map_location=torch.device("cpu")) | |
| torch.save( | |
| replace_keys_in_dict( | |
| replace_keys_in_dict( | |
| model, ".parametrizations.weight.original1", ".weight_v" | |
| ), | |
| ".parametrizations.weight.original0", | |
| ".weight_g", | |
| ), | |
| pth_file_old_version_path, | |
| ) | |
| os.remove(pth_file_path) | |
| os.rename(pth_file_old_version_path, pth_file_path) | |
| return "Success!" | |
| except Exception as error: | |
| print(error) | |
| def extract_small_model(path, name, sr, if_f0, info, version): | |
| try: | |
| ckpt = torch.load(path, map_location="cpu") | |
| if "model" in ckpt: | |
| ckpt = ckpt["model"] | |
| opt = OrderedDict( | |
| weight={ | |
| key: value.half() for key, value in ckpt.items() if "enc_q" not in key | |
| } | |
| ) | |
| opt["config"] = { | |
| "40000": [ | |
| 1025, | |
| 32, | |
| 192, | |
| 192, | |
| 768, | |
| 2, | |
| 6, | |
| 3, | |
| 0, | |
| "1", | |
| [3, 7, 11], | |
| [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| [10, 10, 2, 2], | |
| 512, | |
| [16, 16, 4, 4], | |
| 109, | |
| 256, | |
| 40000, | |
| ], | |
| "48000": { | |
| "v1": [ | |
| 1025, | |
| 32, | |
| 192, | |
| 192, | |
| 768, | |
| 2, | |
| 6, | |
| 3, | |
| 0, | |
| "1", | |
| [3, 7, 11], | |
| [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| [10, 6, 2, 2, 2], | |
| 512, | |
| [16, 16, 4, 4, 4], | |
| 109, | |
| 256, | |
| 48000, | |
| ], | |
| "v2": [ | |
| 1025, | |
| 32, | |
| 192, | |
| 192, | |
| 768, | |
| 2, | |
| 6, | |
| 3, | |
| 0, | |
| "1", | |
| [3, 7, 11], | |
| [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| [12, 10, 2, 2], | |
| 512, | |
| [24, 20, 4, 4], | |
| 109, | |
| 256, | |
| 48000, | |
| ], | |
| }, | |
| "32000": { | |
| "v1": [ | |
| 513, | |
| 32, | |
| 192, | |
| 192, | |
| 768, | |
| 2, | |
| 6, | |
| 3, | |
| 0, | |
| "1", | |
| [3, 7, 11], | |
| [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| [10, 4, 2, 2, 2], | |
| 512, | |
| [16, 16, 4, 4, 4], | |
| 109, | |
| 256, | |
| 32000, | |
| ], | |
| "v2": [ | |
| 513, | |
| 32, | |
| 192, | |
| 192, | |
| 768, | |
| 2, | |
| 6, | |
| 3, | |
| 0, | |
| "1", | |
| [3, 7, 11], | |
| [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| [10, 8, 2, 2], | |
| 512, | |
| [20, 16, 4, 4], | |
| 109, | |
| 256, | |
| 32000, | |
| ], | |
| }, | |
| } | |
| opt["config"] = ( | |
| opt["config"][sr] | |
| if isinstance(opt["config"][sr], list) | |
| else opt["config"][sr][version] | |
| ) | |
| if info == "": | |
| info = "Extracted model." | |
| opt["info"], opt["version"], opt["sr"], opt["f0"] = ( | |
| info, | |
| version, | |
| sr, | |
| int(if_f0), | |
| ) | |
| torch.save(opt, f"logs/{name}/{name}.pth") | |
| return "Success." | |
| except Exception as error: | |
| print(error) | |
| def change_info(path, info, name): | |
| try: | |
| ckpt = torch.load(path, map_location="cpu") | |
| ckpt["info"] = info | |
| if name == "": | |
| name = os.path.basename(path) | |
| torch.save(ckpt, f"logs/weights/{name}") | |
| return "Success." | |
| except Exception as error: | |
| print(error) | |