TimbText / app.py
TIMBOVILL's picture
Update app.py
0f352e1 verified
import os
import random
import gradio as gr
from groq import Groq
client = Groq(
api_key=os.environ.get("Groq_Api_Key")
)
def create_history_messages(history):
history_messages = [{"role": "user", "content": m[0]} for m in history]
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
return history_messages
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
messages = create_history_messages(history)
messages.append({"role": "user", "content": prompt})
print(messages)
if seed == 0:
seed = random.randint(1, 100000)
stream = client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
seed=seed,
stop=None,
stream=True,
)
response = ""
for chunk in stream:
delta_content = chunk.choices[0].delta.content
if delta_content is not None:
response += delta_content
yield response
return response
additional_inputs = [
gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], value="llama3-70b-8192", label="Model"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
gr.Slider(minimum=1, maximum=32192, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b, llama 7b & 70b, 32k for mixtral 8x7b."),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random")
]
theme = gr.themes.Base(
neutral_hue=gr.themes.Color(c100="#f3f4f6", c200="#e5e7eb", c300="#d1d5db", c400="#9ca3af", c50="#f9fafb", c500="#000000", c600="#3b82f6", c700="#3b82f6", c800="#26252a", c900="#26252a", c950="#000000"),
spacing_size="sm",
radius_size="lg",
).set(
block_background_fill_dark='*background_fill_primary',
block_border_color='*background_fill_primary',
block_border_color_dark='*background_fill_primary',
block_border_width='0px',
block_border_width_dark='0px',
block_label_border_color='*background_fill_primary',
block_label_border_color_dark='*background_fill_primary',
block_label_border_width='0px',
block_label_border_width_dark='0px'
)
with open('top_bar.html', 'r') as file:
top_bar_html = file.read()
interface = gr.ChatInterface(
fn=generate_response,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=False, likeable=False, layout="bubble"),
additional_inputs=additional_inputs,
theme=theme,
submit_btn="↑",
undo_btn="Delete",
retry_btn="Retry",
head="./top_bar.html"
)
with gr.Blocks(theme=theme) as demo:
gr.HTML(top_bar_html)
interface.render()
demo.launch()