import os import random import gradio as gr from groq import Groq client = Groq( api_key=os.environ.get("Groq_Api_Key") ) def create_history_messages(history): history_messages = [{"role": "user", "content": m[0]} for m in history] history_messages.extend([{"role": "assistant", "content": m[1]} for m in history]) return history_messages def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed): messages = create_history_messages(history) messages.append({"role": "user", "content": prompt}) print(messages) if seed == 0: seed = random.randint(1, 100000) stream = client.chat.completions.create( messages=messages, model=model, temperature=temperature, max_tokens=max_tokens, top_p=top_p, seed=seed, stop=None, stream=True, ) response = "" for chunk in stream: delta_content = chunk.choices[0].delta.content if delta_content is not None: response += delta_content yield response return response additional_inputs = [ gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], value="llama3-70b-8192", label="Model"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."), gr.Slider(minimum=1, maximum=32192, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.
Maximums: 8k for gemma 7b, llama 7b & 70b, 32k for mixtral 8x7b."), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random") ] theme = gr.themes.Base( neutral_hue=gr.themes.Color(c100="#f3f4f6", c200="#e5e7eb", c300="#d1d5db", c400="#9ca3af", c50="#f9fafb", c500="#000000", c600="#3b82f6", c700="#3b82f6", c800="#26252a", c900="#26252a", c950="#000000"), spacing_size="sm", radius_size="lg", ).set( block_background_fill_dark='*background_fill_primary', block_border_color='*background_fill_primary', block_border_color_dark='*background_fill_primary', block_border_width='0px', block_border_width_dark='0px', block_label_border_color='*background_fill_primary', block_label_border_color_dark='*background_fill_primary', block_label_border_width='0px', block_label_border_width_dark='0px' ) with open('top_bar.html', 'r') as file: top_bar_html = file.read() interface = gr.ChatInterface( fn=generate_response, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=False, likeable=False, layout="bubble"), additional_inputs=additional_inputs, theme=theme, submit_btn="↑", undo_btn="Delete", retry_btn="Retry", head="./top_bar.html" ) with gr.Blocks(theme=theme) as demo: gr.HTML(top_bar_html) interface.render() demo.launch()