TSEditor / config /backup /revenue-1.yaml
PeterYu's picture
update
2875fe6
raw
history blame
1.77 kB
model:
target: Models.interpretable_diffusion.gaussian_diffusion.Diffusion_TS
params:
seq_length: 240
feature_size: 3
n_layer_enc: 8
n_layer_dec: 5
d_model: 128 # 4 X 16
timesteps: 1000 # diffusion timesteps
sampling_timesteps: 200
loss_type: 'l2'
beta_schedule: 'cosine'
n_heads: 8
mlp_hidden_times: 4
attn_pd: 0.0
resid_pd: 0.0
kernel_size: 1
padding_size: 0
solver:
base_lr: 1.0e-5
max_epochs: 1385
results_folder: ../../../data/Checkpoints_revenue-1
gradient_accumulate_every: 1
save_cycle: 277 # max_epochs // 5
ema:
decay: 0.995
update_interval: 10
scheduler:
target: engine.lr_sch.ReduceLROnPlateauWithWarmup
params:
factor: 0.5
patience: 200
min_lr: 1.0e-5
threshold: 1.0e-1
threshold_mode: rel
warmup_lr: 8.0e-4
warmup: 300
verbose: False
dataloader:
train_dataset:
target: utils.data_utils.real_datasets.RevenueDataset
params:
name: revenue
proportion: 0.8 # Set to rate < 1 if training conditional generation
# data_root: ./Data/datasets/stock_data.csv
data_root: ../../../data/daily.csv
window: 240 # seq_length
save2npy: True
neg_one_to_one: True
seed: 2024
period: train
test_dataset:
target: utils.data_utils.real_datasets.RevenueDataset
params:
name: revenue
proportion: 0.8 # rate
data_root: ../../../data/daily.csv
window: 240 # seq_length
save2npy: True
neg_one_to_one: True
seed: 2024
period: test
style: separate
distribution: geometric
coefficient: 1.0e-2
step_size: 5.0e-2
sampling_steps: 200
batch_size: 64
sample_size: 256
shuffle: True