Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
def cacf_torch(x, max_lag, dim=(0, 1)): | |
def get_lower_triangular_indices(n): | |
return [list(x) for x in torch.tril_indices(n, n)] | |
ind = get_lower_triangular_indices(x.shape[2]) | |
x = (x - x.mean(dim, keepdims=True)) / x.std(dim, keepdims=True) | |
x_l = x[..., ind[0]] | |
x_r = x[..., ind[1]] | |
cacf_list = list() | |
for i in range(max_lag): | |
y = x_l[:, i:] * x_r[:, :-i] if i > 0 else x_l * x_r | |
cacf_i = torch.mean(y, (1)) | |
cacf_list.append(cacf_i) | |
cacf = torch.cat(cacf_list, 1) | |
return cacf.reshape(cacf.shape[0], -1, len(ind[0])) | |
class Loss(nn.Module): | |
def __init__( | |
self, | |
name, | |
reg=1.0, | |
transform=lambda x: x, | |
threshold=10.0, | |
backward=False, | |
norm_foo=lambda x: x, | |
): | |
super(Loss, self).__init__() | |
self.name = name | |
self.reg = reg | |
self.transform = transform | |
self.threshold = threshold | |
self.backward = backward | |
self.norm_foo = norm_foo | |
def forward(self, x_fake): | |
self.loss_componentwise = self.compute(x_fake) | |
return self.reg * self.loss_componentwise.mean() | |
def compute(self, x_fake): | |
raise NotImplementedError() | |
def success(self): | |
return torch.all(self.loss_componentwise <= self.threshold) | |
class CrossCorrelLoss(Loss): | |
def __init__(self, x_real, **kwargs): | |
super(CrossCorrelLoss, self).__init__( | |
norm_foo=lambda x: torch.abs(x).sum(0), **kwargs | |
) | |
self.cross_correl_real = cacf_torch(self.transform(x_real), 1).mean(0)[0] | |
def compute(self, x_fake): | |
cross_correl_fake = cacf_torch(self.transform(x_fake), 1).mean(0)[0] | |
loss = self.norm_foo( | |
cross_correl_fake - self.cross_correl_real.to(x_fake.device) | |
) | |
return loss / 10.0 | |