Spaces:
Sleeping
Sleeping
model: | |
target: models.Tiffusion.tiffusion.Tiffusion | |
params: | |
seq_length: 192 | |
feature_size: 50 | |
n_layer_enc: 4 | |
n_layer_dec: 4 | |
d_model: 96 # 4 X 24 | |
timesteps: 1000 | |
sampling_timesteps: 1000 | |
loss_type: 'l1' | |
beta_schedule: 'cosine' | |
n_heads: 4 | |
mlp_hidden_times: 4 | |
attn_pd: 0.0 | |
resid_pd: 0.0 | |
kernel_size: 5 | |
padding_size: 2 | |
solver: | |
base_lr: 1.0e-5 | |
max_epochs: 15000 | |
results_folder: ../../../data/Checkpoints_fmri | |
gradient_accumulate_every: 2 | |
save_cycle: 1500 # max_epochs // 10 | |
ema: | |
decay: 0.995 | |
update_interval: 10 | |
scheduler: | |
target: engine.lr_sch.ReduceLROnPlateauWithWarmup | |
params: | |
factor: 0.5 | |
patience: 3000 | |
min_lr: 1.0e-5 | |
threshold: 1.0e-1 | |
threshold_mode: rel | |
warmup_lr: 8.0e-4 | |
warmup: 500 | |
verbose: False | |
dataloader: | |
train_dataset: | |
target: utils.data_utils.real_datasets.fMRIDataset | |
params: | |
name: fMRI | |
proportion: 0.9 # Set to rate < 1 if training conditional generation | |
data_root: ./data/fMRI | |
window: 192 # seq_length | |
save2npy: True | |
neg_one_to_one: True | |
seed: 123 | |
period: train | |
test_dataset: | |
target: utils.data_utils.real_datasets.fMRIDataset | |
params: | |
name: fMRI | |
proportion: 0.9 # rate | |
data_root: ./data/fMRI | |
window: 192 # seq_length | |
save2npy: True | |
neg_one_to_one: True | |
seed: 123 | |
period: test | |
style: separate | |
distribution: geometric | |
coefficient: 1.0e-2 | |
step_size: 5.0e-2 | |
sampling_steps: 250 | |
batch_size: 64 | |
sample_size: 256 | |
shuffle: True |