\begin{tabular}{llcccccrr} \toprule \textbf{Model} & \textbf{Elo ($\uparrow$)} & \textbf{Norm.} & \textbf{Avg.} & \textbf{Harm.} & \textbf{\#wins ($\uparrow$)} & \textbf{Improva-} & \textbf{Train time} & \textbf{Predict time} \\ & & \textbf{score ($\uparrow$)} & \textbf{rank ($\downarrow$)} & \textbf{mean} & & \textbf{bility ($\downarrow$)} & \textbf{per 1K [s]} & \textbf{per 1K [s]} \\ & & & & \textbf{rank ($\downarrow$)} & & & & \\ \midrule AutoGluon 1.3 (4h) & \textcolor{gold}{\textbf{1795${}_{-55,+67}$}} & \textcolor{gold}{\textbf{0.740}} & \textcolor{gold}{\textbf{4.6}} & \textcolor{silver}{\textbf{2.5}} & 2 & \textcolor{silver}{\textbf{2.7\%}} & 1625.74 & 6.76 \\ RealMLP (T+E) & \textcolor{silver}{\textbf{1766${}_{-64,+61}$}} & \textcolor{silver}{\textbf{0.732}} & \textcolor{silver}{\textbf{5.3}} & 3.4 & 0 & \textcolor{gold}{\textbf{2.0\%}} & 7141.94 & 9.66 \\ ModernNCA (T+E) & \textcolor{bronze}{\textbf{1632${}_{-52,+51}$}} & 0.625 & \textcolor{bronze}{\textbf{8.3}} & \textcolor{bronze}{\textbf{2.8}} & \textcolor{silver}{\textbf{3}} & 3.8\% & 3779.52 & 7.69 \\ TabDPT (D) & 1620${}_{-62,+53}$ & \textcolor{bronze}{\textbf{0.651}} & 8.8 & \textcolor{gold}{\textbf{2.3}} & \textcolor{gold}{\textbf{5}} & \textcolor{bronze}{\textbf{2.9\%}} & 22.53 & 8.55 \\ CatBoost (T+E) & 1616${}_{-51,+59}$ & 0.547 & 8.9 & 7.2 & 0 & 4.5\% & 3552.96 & 0.97 \\ LightGBM (T+E) & 1609${}_{-53,+58}$ & 0.542 & 9.2 & 7.1 & 0 & 5.0\% & 700.15 & 9.32 \\ CatBoost (T) & 1568${}_{-46,+64}$ & 0.524 & 10.3 & 6.9 & 0 & 4.6\% & 3552.96 & 0.10 \\ TabM (T+E) & 1562${}_{-64,+54}$ & 0.494 & 10.5 & 6.5 & 0 & 3.3\% & 4158.29 & 1.41 \\ XGBoost (T+E) & 1496${}_{-51,+43}$ & 0.447 & 12.8 & 12.3 & 0 & 5.5\% & 834.93 & 2.61 \\ LightGBM (T) & 1490${}_{-50,+55}$ & 0.445 & 12.9 & 10.8 & 0 & 5.6\% & 700.15 & 0.97 \\ XGBoost (T) & 1474${}_{-46,+46}$ & 0.414 & 13.7 & 13.1 & 0 & 5.6\% & 834.93 & 0.39 \\ ModernNCA (T) & 1446${}_{-49,+52}$ & 0.360 & 14.6 & 7.2 & 0 & 5.9\% & 3779.52 & 0.40 \\ TabM (T) & 1440${}_{-54,+39}$ & 0.392 & 15.0 & 11.6 & 0 & 4.3\% & 4158.29 & 0.17 \\ CatBoost (D) & 1439${}_{-57,+48}$ & 0.400 & 15.0 & 11.5 & 0 & 6.2\% & 10.89 & 0.09 \\ RealMLP (T) & 1405${}_{-53,+53}$ & 0.350 & 16.4 & 13.9 & 0 & 4.6\% & 7141.94 & 0.39 \\ TabPFNv2 (T+E) & 1381${}_{-47,+55}$ & 0.414 & 17.2 & 3.1 & \textcolor{silver}{\textbf{3}} & 5.1\% & 4223.87 & 27.54 \\ ModernNCA (D) & 1340${}_{-54,+50}$ & 0.216 & 18.8 & 14.1 & 0 & 7.4\% & 15.50 & 0.30 \\ TabM (D) & 1329${}_{-48,+53}$ & 0.300 & 19.2 & 15.6 & 0 & 6.0\% & 13.32 & 0.13 \\ TorchMLP (T+E) & 1306${}_{-57,+46}$ & 0.182 & 20.2 & 14.6 & 0 & 7.6\% & 4608.59 & 1.23 \\ TabPFNv2 (T) & 1300${}_{-55,+53}$ & 0.287 & 20.6 & 8.4 & 0 & 6.2\% & 4223.87 & 0.45 \\ RealMLP (D) & 1284${}_{-48,+47}$ & 0.152 & 21.3 & 18.4 & 0 & 7.0\% & 21.86 & 0.84 \\ ExtraTrees (T+E) & 1272${}_{-60,+53}$ & 0.162 & 21.5 & 13.6 & 0 & 10.0\% & 158.22 & 0.84 \\ LightGBM (D) & 1264${}_{-54,+53}$ & 0.091 & 21.9 & 21.3 & 0 & 8.1\% & 2.11 & 0.27 \\ ExtraTrees (T) & 1255${}_{-53,+42}$ & 0.136 & 22.3 & 16.9 & 0 & 10.3\% & 158.22 & 0.15 \\ TabPFNv2 (D) & 1231${}_{-61,+59}$ & 0.238 & 23.3 & 11.5 & 0 & 7.6\% & 2.80 & 0.31 \\ TorchMLP (T) & 1230${}_{-47,+46}$ & 0.131 & 23.3 & 20.1 & 0 & 8.4\% & 4608.59 & 0.10 \\ XGBoost (D) & 1215${}_{-46,+42}$ & 0.114 & 24.1 & 21.5 & 0 & 8.8\% & 2.24 & 0.24 \\ RandomForest (T+E) & 1203${}_{-48,+46}$ & 0.076 & 24.5 & 22.4 & 0 & 10.9\% & 515.73 & 0.77 \\ RandomForest (T) & 1153${}_{-58,+49}$ & 0.055 & 26.2 & 24.5 & 0 & 11.4\% & 515.73 & 0.12 \\ EBM (T+E) & 1136${}_{-61,+46}$ & 0.171 & 27.0 & 13.4 & 0 & 13.7\% & 1890.68 & 0.13 \\ ExtraTrees (D) & 1100${}_{-63,+56}$ & 0.069 & 28.1 & 25.0 & 0 & 12.2\% & 0.47 & 0.06 \\ EBM (T) & 1092${}_{-57,+50}$ & 0.150 & 28.5 & 17.0 & 0 & 14.2\% & 1890.68 & 0.01 \\ FastaiMLP (T+E) & 1040${}_{-50,+62}$ & 0.024 & 30.0 & 28.0 & 0 & 12.2\% & 540.06 & 2.67 \\ TorchMLP (D) & 1038${}_{-63,+58}$ & 0.017 & 30.2 & 28.2 & 0 & 11.9\% & 20.48 & 0.08 \\ EBM (D) & 1034${}_{-67,+44}$ & 0.109 & 30.6 & 27.7 & 0 & 15.1\% & 6.33 & 0.04 \\ RandomForest (D) & 1000${}_{-0,+0}$ & 0.000 & 31.3 & 30.7 & 0 & 12.9\% & 0.53 & 0.06 \\ FastaiMLP (T) & 992${}_{-65,+49}$ & 0.014 & 31.7 & 30.4 & 0 & 12.7\% & 540.06 & 0.32 \\ FastaiMLP (D) & 858${}_{-70,+53}$ & 0.000 & 34.9 & 34.3 & 0 & 17.1\% & 2.60 & 0.39 \\ KNN (T+E) & 532${}_{-96,+78}$ & 0.000 & 39.8 & 39.6 & 0 & 36.1\% & 2.43 & 0.14 \\ Linear (T+E) & 489${}_{-95,+53}$ & 0.000 & 40.3 & 40.2 & 0 & 35.4\% & 45.74 & 0.11 \\ KNN (T) & 442${}_{-135,+68}$ & 0.000 & 40.8 & 40.6 & 0 & 36.8\% & 2.43 & 0.03 \\ Linear (T) & 421${}_{-95,+82}$ & 0.000 & 40.9 & 40.8 & 0 & 35.6\% & 45.74 & 0.05 \\ Linear (D) & 290${}_{-113,+87}$ & 0.000 & 42.2 & 42.1 & 0 & 38.1\% & 1.19 & 0.09 \\ KNN (D) & 239${}_{-146,+87}$ & 0.000 & 42.6 & 42.4 & 0 & 40.8\% & 0.04 & 0.02 \\ \bottomrule \end{tabular}