Spaces:
Running
Running
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import mimetypes | |
import os | |
import re | |
import shutil | |
from typing import Optional | |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types | |
from smolagents.agents import ActionStep, MultiStepAgent | |
from smolagents.memory import MemoryStep | |
from smolagents.utils import _is_package_available | |
def pull_messages_from_step( | |
step_log: MemoryStep, | |
): | |
"""Extract ChatMessage objects from agent steps with proper nesting""" | |
import gradio as gr | |
if isinstance(step_log, ActionStep): | |
# Output the step number | |
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "" | |
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") | |
# First yield the thought/reasoning from the LLM | |
if hasattr(step_log, "model_output") and step_log.model_output is not None: | |
# Clean up the LLM output | |
model_output = step_log.model_output.strip() | |
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats | |
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code> | |
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>``` | |
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code> | |
model_output = model_output.strip() | |
yield gr.ChatMessage(role="assistant", content=model_output) | |
# For tool calls, create a parent message | |
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None: | |
first_tool_call = step_log.tool_calls[0] | |
used_code = first_tool_call.name == "python_interpreter" | |
parent_id = f"call_{len(step_log.tool_calls)}" | |
# Tool call becomes the parent message with timing info | |
# First we will handle arguments based on type | |
args = first_tool_call.arguments | |
if isinstance(args, dict): | |
content = str(args.get("answer", str(args))) | |
else: | |
content = str(args).strip() | |
if used_code: | |
# Clean up the content by removing any end code tags | |
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks | |
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags | |
content = content.strip() | |
if not content.startswith("```python"): | |
content = f"```python\n{content}\n```" | |
parent_message_tool = gr.ChatMessage( | |
role="assistant", | |
content=content, | |
metadata={ | |
"title": f"🛠️ Used tool {first_tool_call.name}", | |
"id": parent_id, | |
"status": "pending", | |
}, | |
) | |
yield parent_message_tool | |
# Nesting execution logs under the tool call if they exist | |
if hasattr(step_log, "observations") and ( | |
step_log.observations is not None and step_log.observations.strip() | |
): # Only yield execution logs if there's actual content | |
log_content = step_log.observations.strip() | |
if log_content: | |
log_content = re.sub(r"^Execution logs:\s*", "", log_content) | |
yield gr.ChatMessage( | |
role="assistant", | |
content=f"{log_content}", | |
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"}, | |
) | |
# Nesting any errors under the tool call | |
if hasattr(step_log, "error") and step_log.error is not None: | |
yield gr.ChatMessage( | |
role="assistant", | |
content=str(step_log.error), | |
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"}, | |
) | |
# Update parent message metadata to done status without yielding a new message | |
parent_message_tool.metadata["status"] = "done" | |
# Handle standalone errors but not from tool calls | |
elif hasattr(step_log, "error") and step_log.error is not None: | |
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"}) | |
# Calculate duration and token information | |
step_footnote = f"{step_number}" | |
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"): | |
token_str = ( | |
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}" | |
) | |
step_footnote += token_str | |
if hasattr(step_log, "duration"): | |
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None | |
step_footnote += step_duration | |
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ | |
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}") | |
yield gr.ChatMessage(role="assistant", content="-----") | |
def stream_to_gradio( | |
agent, | |
task: str, | |
reset_agent_memory: bool = False, | |
additional_args: Optional[dict] = None, | |
): | |
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" | |