Spaces:
Runtime error
Runtime error
File size: 68,993 Bytes
ab1d8bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine-tuning Embeddings for Design Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see if we can improve the quality of our returned results using a fine-tuned embedding model trained on our designs!\n",
"\n",
"We'll use SentenceTransformers to fine-tune our embedding model, as it provides a straightforward approach for adapting models to specific domains."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Install required packages if needed\n",
"# !pip install sentence-transformers datasets torch matplotlib"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"from pathlib import Path\n",
"from sentence_transformers import SentenceTransformer, InputExample, losses\n",
"from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator\n",
"from torch.utils.data import DataLoader"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Load Design Data\n",
"\n",
"First, we'll load the design data from our existing dataset."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/data/designs\n",
"Loaded 141 designs\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>text</th>\n",
" <th>categories</th>\n",
" <th>visual_characteristics</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>135</td>\n",
" <td>Design 135:\\n Description: This des...</td>\n",
" <td>[Traditional, Elegant, Text-Heavy, Classic]</td>\n",
" <td>[Muted Color Palette, Vertical Layout, Serif T...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>132</td>\n",
" <td>Design 132:\\n Description: This des...</td>\n",
" <td>[minimalist, nature-inspired, modern, zen-them...</td>\n",
" <td>[white background, green accents, illustrative...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>104</td>\n",
" <td>Design 104:\\n Description: The CSS ...</td>\n",
" <td>[minimalism, elegance, typography, web design ...</td>\n",
" <td>[subtle color palette, classic serif fonts, cl...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>103</td>\n",
" <td>Design 103:\\n Description: This des...</td>\n",
" <td>[vintage, classical, dramatic, ornate, elegant]</td>\n",
" <td>[dark color palette, gold accents, traditional...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>168</td>\n",
" <td>Design 168:\\n Description: This des...</td>\n",
" <td>[Humorous, Educational, Whimsical, Nature-them...</td>\n",
" <td>[Vibrant color palette, Whimsical illustration...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id text \\\n",
"0 135 Design 135:\\n Description: This des... \n",
"1 132 Design 132:\\n Description: This des... \n",
"2 104 Design 104:\\n Description: The CSS ... \n",
"3 103 Design 103:\\n Description: This des... \n",
"4 168 Design 168:\\n Description: This des... \n",
"\n",
" categories \\\n",
"0 [Traditional, Elegant, Text-Heavy, Classic] \n",
"1 [minimalist, nature-inspired, modern, zen-them... \n",
"2 [minimalism, elegance, typography, web design ... \n",
"3 [vintage, classical, dramatic, ornate, elegant] \n",
"4 [Humorous, Educational, Whimsical, Nature-them... \n",
"\n",
" visual_characteristics \n",
"0 [Muted Color Palette, Vertical Layout, Serif T... \n",
"1 [white background, green accents, illustrative... \n",
"2 [subtle color palette, classic serif fonts, cl... \n",
"3 [dark color palette, gold accents, traditional... \n",
"4 [Vibrant color palette, Whimsical illustration... "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def load_design_data():\n",
" \"\"\"Load design data from the metadata files\"\"\"\n",
" designs_dir = Path.cwd().parent / \"src\" / \"data\" / \"designs\"\n",
" print(designs_dir)\n",
" designs = []\n",
" \n",
" # Load all metadata files\n",
" for design_dir in designs_dir.glob(\"**/metadata.json\"):\n",
" try:\n",
" with open(design_dir, \"r\") as f:\n",
" metadata = json.load(f)\n",
" \n",
" # Create a text representation of the design\n",
" text = f\"\"\"Design {metadata.get('id', 'unknown')}:\n",
" Description: {metadata.get('description', 'No description available')}\n",
" Categories: {', '.join(metadata.get('categories', []))}\n",
" Visual Characteristics: {', '.join(metadata.get('visual_characteristics', []))}\n",
" \"\"\"\n",
" \n",
" designs.append({\n",
" 'id': metadata.get('id', 'unknown'),\n",
" 'text': text.strip(),\n",
" 'categories': metadata.get('categories', []),\n",
" 'visual_characteristics': metadata.get('visual_characteristics', [])\n",
" })\n",
" except Exception as e:\n",
" print(f\"Error processing design {design_dir}: {e}\")\n",
" continue\n",
" \n",
" print(f\"Loaded {len(designs)} designs\")\n",
" return designs\n",
"\n",
"designs = load_design_data()\n",
"designs_df = pd.DataFrame(designs)\n",
"designs_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Create Training Pairs\n",
"\n",
"For fine-tuning, we need to create positive pairs (similar designs) and negative pairs (dissimilar designs). We'll use categories and visual characteristics to determine similarity."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating training pairs...\n",
"Created 95 training examples and 27 evaluation examples\n"
]
}
],
"source": [
"from sentence_transformers import InputExample\n",
"def create_training_pairs(designs_df, num_pairs=5000):\n",
" \"\"\"Create training pairs for fine-tuning\"\"\"\n",
" training_pairs = []\n",
" design_ids = designs_df['id'].tolist()\n",
" \n",
" # Calculate similarity between designs based on categories and characteristics\n",
" def calculate_similarity(design1, design2):\n",
" # Get categories and characteristics for both designs\n",
" cats1 = set(design1['categories'])\n",
" cats2 = set(design2['categories'])\n",
" chars1 = set(design1['visual_characteristics'])\n",
" chars2 = set(design2['visual_characteristics'])\n",
" \n",
" # Calculate Jaccard similarity for categories and characteristics\n",
" cat_sim = len(cats1.intersection(cats2)) / max(1, len(cats1.union(cats2)))\n",
" char_sim = len(chars1.intersection(chars2)) / max(1, len(chars1.union(chars2)))\n",
" \n",
" # Weighted similarity\n",
" return 0.5 * cat_sim + 0.5 * char_sim\n",
" \n",
" # Create similarity matrix\n",
" import random\n",
" train_examples = []\n",
" eval_examples = []\n",
" \n",
" # Create positive pairs (similar designs)\n",
" for i in range(len(designs_df)):\n",
" design1 = designs_df.iloc[i].to_dict()\n",
" similarities = []\n",
" \n",
" for j in range(len(designs_df)):\n",
" if i != j:\n",
" design2 = designs_df.iloc[j].to_dict()\n",
" sim = calculate_similarity(design1, design2)\n",
" similarities.append((j, sim))\n",
" \n",
" # Sort by similarity\n",
" similarities.sort(key=lambda x: x[1], reverse=True)\n",
" \n",
" # Add top similar designs as positive pairs\n",
" for j, sim in similarities[:3]: # Top 3 most similar\n",
" if sim > 0.2: # Only if they're somewhat similar\n",
" design2 = designs_df.iloc[j].to_dict()\n",
" # Create InputExample with texts and similarity score\n",
" example = InputExample(texts=[design1['text'], design2['text']], label=float(sim))\n",
" \n",
" # 80% for training, 20% for evaluation\n",
" if random.random() < 0.8:\n",
" train_examples.append(example)\n",
" else:\n",
" eval_examples.append(example)\n",
" \n",
" print(f\"Created {len(train_examples)} training examples and {len(eval_examples)} evaluation examples\")\n",
" return train_examples, eval_examples\n",
"\n",
"print(\"Creating training pairs...\")\n",
"train_examples, eval_examples = create_training_pairs(designs_df) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Fine-tune the Model\n",
"\n",
"The model I've selected here is the distilbert-base-nli-stsb-mean-tokens model, chosen as a comparison because its BERT training is effective at semantic similarity. Performance isn't too important here, since we have one design per query and we want to return the best match."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting model fine-tuning...\n",
"Loading base model: sentence-transformers/distilbert-base-nli-stsb-mean-tokens\n",
"\n",
"Training configuration:\n",
"- Training examples: 95\n",
"- Evaluation examples: 27\n",
"- Batch size: 16\n",
"- Warmup steps: 0\n",
"- Using GPU: False\n",
"- Model will be saved to: /Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/fine_tuned_design_embeddings_20250225_161918\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e4315da477764680aaacae97230e6409",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Computing widget examples: 0%| | 0/1 [00:00<?, ?example/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='6' max='6' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [6/6 00:36, Epoch 1/1]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" <th>Pearson Cosine</th>\n",
" <th>Spearman Cosine</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>6</td>\n",
" <td>No log</td>\n",
" <td>No log</td>\n",
" <td>-0.139605</td>\n",
" <td>-0.068639</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Training complete!\n",
"Model saved to /Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/fine_tuned_design_embeddings_20250225_161918\n"
]
}
],
"source": [
"def fine_tune_model_simple(train_examples, eval_examples, base_model=\"sentence-transformers/distilbert-base-nli-stsb-mean-tokens\"):\n",
" \"\"\"Fine-tune a SentenceTransformer model\"\"\"\n",
" import os\n",
" import torch\n",
" from datetime import datetime\n",
" from sentence_transformers import SentenceTransformer, losses\n",
" from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator\n",
" from torch.utils.data import DataLoader\n",
" \n",
" # Load the base model\n",
" print(f\"Loading base model: {base_model}\")\n",
" model = SentenceTransformer(base_model)\n",
" \n",
" # Create training dataloader\n",
" train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)\n",
" \n",
" # Use CosineSimilarityLoss for fine-tuning\n",
" train_loss = losses.CosineSimilarityLoss(model)\n",
" \n",
" # Create evaluator\n",
" evaluator = EmbeddingSimilarityEvaluator.from_input_examples(eval_examples)\n",
" \n",
" # Create timestamped model save path\n",
" timestamp = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n",
" model_save_path = os.path.join(os.getcwd(), \"fine_tuned_design_embeddings_\" + timestamp)\n",
" \n",
" # Set up warm-up steps\n",
" warmup_steps = int(len(train_dataloader) * 0.1)\n",
"\n",
" print(f\"\\nTraining configuration:\")\n",
" print(f\"- Training examples: {len(train_examples)}\")\n",
" print(f\"- Evaluation examples: {len(eval_examples)}\")\n",
" print(f\"- Batch size: 16\")\n",
" print(f\"- Warmup steps: {warmup_steps}\")\n",
" print(f\"- Using GPU: {torch.cuda.is_available()}\")\n",
" print(f\"- Model will be saved to: {model_save_path}\")\n",
" \n",
" # Train the model\n",
" model.fit(\n",
" train_objectives=[(train_dataloader, train_loss)],\n",
" evaluator=evaluator,\n",
" epochs=1, # Start with just 1 epoch to test\n",
" warmup_steps=warmup_steps,\n",
" output_path=model_save_path,\n",
" show_progress_bar=True\n",
" )\n",
" \n",
" print(f\"\\nTraining complete!\")\n",
" print(f\"Model saved to {model_save_path}\")\n",
" \n",
" return model, model_save_path\n",
"\n",
"print(\"Starting model fine-tuning...\")\n",
"fine_tuned_model, model_path = fine_tune_model_simple(train_examples, eval_examples)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Evaluate Fine-tuned Model vs Base Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll need nest_asyncio to run the async evaluation inside a Jupyter notebook."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"import nest_asyncio\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Now define a synchronous wrapper for our comparison function\n",
"def compare_models_sync(base_model_name, fine_tuned_model_path, test_queries):\n",
" \"\"\"Synchronous wrapper for compare_models\"\"\"\n",
" import asyncio\n",
" from langchain_openai import ChatOpenAI\n",
" import json\n",
" \n",
" # Load models\n",
" print(f\"Loading base model: {base_model_name}\")\n",
" base_model = SentenceTransformer(base_model_name)\n",
" \n",
" print(f\"Loading fine-tuned model from: {fine_tuned_model_path}\")\n",
" fine_tuned_model = SentenceTransformer(fine_tuned_model_path)\n",
" \n",
" # Initialize evaluator\n",
" llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
" \n",
" # Create a retrieval function using each model\n",
" def retrieve_with_model(model, query, k=1):\n",
" # Get embeddings for designs\n",
" design_texts = designs_df['text'].tolist()\n",
" design_embeddings = model.encode(design_texts, convert_to_tensor=True)\n",
" \n",
" # Get query embedding\n",
" query_embedding = model.encode(query, convert_to_tensor=True)\n",
" \n",
" # Calculate cosine similarities\n",
" cos_scores = torch.nn.functional.cosine_similarity(query_embedding.unsqueeze(0), design_embeddings)\n",
" \n",
" # Get top k designs\n",
" top_k_indices = torch.topk(cos_scores, k=k).indices.tolist()\n",
" \n",
" # Return top k designs\n",
" return [designs_df.iloc[i] for i in top_k_indices]\n",
" \n",
" # Evaluate a design match\n",
" async def evaluate_match(query, design):\n",
" prompt = f\"\"\"You are evaluating a design recommendation system.\n",
" \n",
" USER REQUIREMENTS:\n",
" {query}\n",
" \n",
" RECOMMENDED DESIGN:\n",
" {design['text']}\n",
" \n",
" Score how well the recommended design matches the user's requirements on a scale of 0-10.\n",
" Provide your score and brief explanation in JSON format exactly like this:\n",
" {{\n",
" \"score\": 7,\n",
" \"reason\": \"The design aligns with the requirements because...\"\n",
" }}\n",
" \n",
" Return only valid JSON, nothing else.\n",
" \"\"\"\n",
" \n",
" try:\n",
" response = await llm.ainvoke(prompt)\n",
" result = json.loads(response.content)\n",
" return result\n",
" except Exception as e:\n",
" print(f\"Error evaluating match: {e}\")\n",
" return {\"score\": 0, \"reason\": f\"Error parsing evaluation: {e}\"}\n",
" \n",
" # Test with both models\n",
" results = []\n",
" \n",
" # Define the evaluation function\n",
" async def evaluate_all_queries():\n",
" for i, query in enumerate(test_queries):\n",
" print(f\"Evaluating query {i+1}/{len(test_queries)}: {query[:50]}...\")\n",
" \n",
" # Get top result from each model\n",
" base_result = retrieve_with_model(base_model, query)[0]\n",
" fine_tuned_result = retrieve_with_model(fine_tuned_model, query)[0]\n",
" \n",
" # Evaluate matches\n",
" base_eval = await evaluate_match(query, base_result)\n",
" fine_tuned_eval = await evaluate_match(query, fine_tuned_result)\n",
" \n",
" # Store results\n",
" results.append({\n",
" \"query\": query,\n",
" \"base_model_id\": base_result['id'],\n",
" \"fine_tuned_model_id\": fine_tuned_result['id'],\n",
" \"base_score\": base_eval.get(\"score\", 0),\n",
" \"base_reason\": base_eval.get(\"reason\", \"Error\"),\n",
" \"fine_tuned_score\": fine_tuned_eval.get(\"score\", 0),\n",
" \"fine_tuned_reason\": fine_tuned_eval.get(\"reason\", \"Error\"),\n",
" \"models_differ\": base_result['id'] != fine_tuned_result['id']\n",
" })\n",
" \n",
" print(f\" Base model: Design {base_result['id']} - Score: {base_eval.get('score', 0)}\")\n",
" print(f\" Fine-tuned: Design {fine_tuned_result['id']} - Score: {fine_tuned_eval.get('score', 0)}\")\n",
" \n",
" # Run the async evaluation using the event loop\n",
" loop = asyncio.get_event_loop()\n",
" loop.run_until_complete(evaluate_all_queries())\n",
" \n",
" return pd.DataFrame(results)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading base model: sentence-transformers/distilbert-base-nli-stsb-mean-tokens\n",
"Loading fine-tuned model from: /Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/fine_tuned_design_embeddings_20250225_161918\n",
"Evaluating query 1/8: I need a minimalist design with lots of whitespace...\n",
" Base model: Design 220 - Score: 8\n",
" Fine-tuned: Design 144 - Score: 9\n",
"Evaluating query 2/8: Looking for a playful, colorful design with rounde...\n",
" Base model: Design 129 - Score: 8\n",
" Fine-tuned: Design 129 - Score: 8\n",
"Evaluating query 3/8: Need a professional business design with a dark th...\n",
" Base model: Design 204 - Score: 8\n",
" Fine-tuned: Design 204 - Score: 8\n",
"Evaluating query 4/8: Want a nature-inspired design with organic shapes...\n",
" Base model: Design 190 - Score: 8\n",
" Fine-tuned: Design 215 - Score: 0\n",
"Evaluating query 5/8: Looking for a tech-focused design with a futuristi...\n",
" Base model: Design 012 - Score: 9\n",
" Fine-tuned: Design 012 - Score: 9\n",
"Evaluating query 6/8: I want the craziest design you can find...\n",
" Base model: Design 008 - Score: 8\n",
" Fine-tuned: Design 008 - Score: 8\n",
"Evaluating query 7/8: I'd like an eye-catching design for a small busine...\n",
" Base model: Design 006 - Score: 8\n",
" Fine-tuned: Design 006 - Score: 8\n",
"Evaluating query 8/8: I want something clinical and informative...\n",
" Base model: Design 130 - Score: 8\n",
" Fine-tuned: Design 004 - Score: 8\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>query</th>\n",
" <th>base_model_id</th>\n",
" <th>fine_tuned_model_id</th>\n",
" <th>base_score</th>\n",
" <th>base_reason</th>\n",
" <th>fine_tuned_score</th>\n",
" <th>fine_tuned_reason</th>\n",
" <th>models_differ</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>I need a minimalist design with lots of whites...</td>\n",
" <td>220</td>\n",
" <td>144</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>9</td>\n",
" <td>The recommended design matches the user's requ...</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Looking for a playful, colorful design with ro...</td>\n",
" <td>129</td>\n",
" <td>129</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Need a professional business design with a dar...</td>\n",
" <td>204</td>\n",
" <td>204</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Want a nature-inspired design with organic shapes</td>\n",
" <td>190</td>\n",
" <td>215</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>0</td>\n",
" <td>The recommended design does not match the user...</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Looking for a tech-focused design with a futur...</td>\n",
" <td>012</td>\n",
" <td>012</td>\n",
" <td>9</td>\n",
" <td>The recommended design aligns very well with t...</td>\n",
" <td>9</td>\n",
" <td>The recommended design aligns very well with t...</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>I want the craziest design you can find</td>\n",
" <td>008</td>\n",
" <td>008</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>8</td>\n",
" <td>The recommended design matches the user's requ...</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>I'd like an eye-catching design for a small bu...</td>\n",
" <td>006</td>\n",
" <td>006</td>\n",
" <td>8</td>\n",
" <td>The recommended design matches the user's requ...</td>\n",
" <td>8</td>\n",
" <td>The recommended design matches the user's requ...</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>I want something clinical and informative</td>\n",
" <td>130</td>\n",
" <td>004</td>\n",
" <td>8</td>\n",
" <td>The recommended design matches the user's requ...</td>\n",
" <td>8</td>\n",
" <td>The design aligns with the user's requirements...</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" query base_model_id \\\n",
"0 I need a minimalist design with lots of whites... 220 \n",
"1 Looking for a playful, colorful design with ro... 129 \n",
"2 Need a professional business design with a dar... 204 \n",
"3 Want a nature-inspired design with organic shapes 190 \n",
"4 Looking for a tech-focused design with a futur... 012 \n",
"5 I want the craziest design you can find 008 \n",
"6 I'd like an eye-catching design for a small bu... 006 \n",
"7 I want something clinical and informative 130 \n",
"\n",
" fine_tuned_model_id base_score \\\n",
"0 144 8 \n",
"1 129 8 \n",
"2 204 8 \n",
"3 215 8 \n",
"4 012 9 \n",
"5 008 8 \n",
"6 006 8 \n",
"7 004 8 \n",
"\n",
" base_reason fine_tuned_score \\\n",
"0 The design aligns with the user's requirements... 9 \n",
"1 The design aligns with the user's requirements... 8 \n",
"2 The design aligns with the user's requirements... 8 \n",
"3 The design aligns with the user's requirements... 0 \n",
"4 The recommended design aligns very well with t... 9 \n",
"5 The design aligns with the user's requirements... 8 \n",
"6 The recommended design matches the user's requ... 8 \n",
"7 The recommended design matches the user's requ... 8 \n",
"\n",
" fine_tuned_reason models_differ \n",
"0 The recommended design matches the user's requ... True \n",
"1 The design aligns with the user's requirements... False \n",
"2 The design aligns with the user's requirements... False \n",
"3 The recommended design does not match the user... True \n",
"4 The recommended design aligns very well with t... False \n",
"5 The recommended design matches the user's requ... False \n",
"6 The recommended design matches the user's requ... False \n",
"7 The design aligns with the user's requirements... True "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"test_queries = [\n",
" \"I need a minimalist design with lots of whitespace\",\n",
" \"Looking for a playful, colorful design with rounded elements\",\n",
" \"Need a professional business design with a dark theme\",\n",
" \"Want a nature-inspired design with organic shapes\",\n",
" \"Looking for a tech-focused design with a futuristic feel\",\n",
" \"I want the craziest design you can find\",\n",
" \"I'd like an eye-catching design for a small business\",\n",
" \"I want something clinical and informative\"\n",
"]\n",
"\n",
"comparison_results = compare_models_sync(\"sentence-transformers/distilbert-base-nli-stsb-mean-tokens\", model_path, test_queries)\n",
"comparison_results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using this, we can verify the returned design of each model and query. A standout element is the \"0\" scored by the fine-tuned model for query #3. Checking the returned design, it's definitely not the nature-inspired design we were looking for. The model without fine-tuning hasn't missed a query that badly, so it's unclear why the training moved in the wrong direction."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Visualize Comparison Results"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYHpJREFUeJzt3Qm4XdPdOP6VWUISJIKQGEIRs5jnqeYheItSEpR6zWKKkiZohVJjW2MRtKYaS801V81iqpnSEkNpgmhCcv7Pd73/c393SnJv3J1zz72fz/Ps3Jx99tln7X3O2Wt/19ihVCqVEgAAANDiOrb8LgEAAIAg6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6KZNGjNmTOrQoUOlk1EVhg8fnhZffPHUWl1xxRX5s3z33XfbxPfgyy+/TD/+8Y/TQgstlNN2xBFHVDpJQDsW19a4FsW1lpl78MEH87mKv61VpC/yvubyPYBiCbpbuXLAUXvp169f2mSTTdKdd96Z2quNN964wXkpL6+++mpF0/bKK6/kDG92gsRqOOdLL710o8/fe++9NZ/BH//4x1RtBQ+1v0O9evVKK6+8cvrVr36VpkyZ0qLvdeqpp+bf9f/+7/+mq666Ku21114tun+AWd1HlJeRI0dWOnn5mnjLLbektnrOH3300QbPl0qlNGDAgPz8dtttl6qx4KHa8vn2pi3+rqpd50ongKY5+eST0xJLLJEv1B999FG+oG+zzTbpT3/6U9VdsFvKoosumsaOHdtgff/+/dOJJ55YsZuJCLpPOumkHKS25hrk2THXXHOlN998Mz355JNpzTXXrPPc73//+/z8f//731SNunXrli699NL8///85z/pxhtvTEcffXR66qmn0rXXXtti7/OXv/wlrb322mn06NEttk+Apt5H1LbCCiukxRZbLH399depS5cuFQsO/ud//icNHTo0tTWRJ/7hD39I66+/fp31Dz30UPrnP/+Z8x0oQlv+XVUrQXeV2HrrrdPqq69e83i//fZLCy64YLrmmmvabdDdu3fv9KMf/WiGz3fu7Ovd0gYNGpS+/fbb/L2rHXRHoH3zzTenbbfdNger1Si+L7W/TwcddFBaa6210nXXXZfOOuusXJgzu6ZPn56mTp2ab8A+/vjjNHjw4BZKdcqfR+y/a9euLbZPoO3fR9QW1yZaXlSO3HDDDem8886rc08SgfiQIUPSp59+WtH0tRWTJ09OPXr0qHQyYKY0L69S8847b+revXuDwPLMM89M6667burTp09+Pi7qjTUBiqbAUfIa+5lnnnnSMsssk37605/W2Saa1UZt3FJLLZVLY6Mp1LHHHjvL5raHHHJI3mdcBOv74Q9/mPuyTps2LT9++umn05Zbbpn69u2b0xul8Pvuu2/6rhrryxuPI23R3CZK9+OYll9++XTXXXc1eP2//vWvnI4o2Chvd9lll83yfaMFwg9+8IP8/+gCUG5eVu7/NaO+VlEjHk2ca+8ntn3sscfSiBEj0gILLJDmnnvutNNOO6VPPvmkweujq8EGG2yQt+nZs2cOfl9++eUG25WPPW6w4m8Eys0Vn2EEohHolUWLi/i8d91110Zf89xzz+Ubvmi2Hd+NzTbbLP3tb39rsF2kedNNN83fhWjJ8POf/7zO+8zOMc+ujh075tYKodxVoKm/ifJ3LWr/47sT28b3LNa/88476Y477qj5bpT3HcF4uTAtPp9o3j5u3LhG+9zF7/ycc87JhSCx73KXhnju9ddfz4UHUSgV35tRo0blFjLvv/9+2nHHHfNnEL/BaDpfWxQK/OxnP8vXjHhtnNc4vw888MAM03DxxRfXpGGNNdbIrQLqi+4e8b2ItMTnGteaE044oUV+b8B311hf3siP4lodv82oKYv/x284Wv+U8++yuEbH9Sh+t3Htit/xT37yk/T555/P8r3jfb/66qt8rStfE8t54YzGG5lT+XvURMexx7UwuvUdeeSRze5uFPnlv//973zPVftaG/dle+yxR6OvifNx1FFH5fwl0hfXzLjexnW8tkhLpCk+l8gDd9hhh5zmxhR9jf2u+U+5yXrcW8S9aGwT5z2OKV5bW+TL8Rk/88wzacMNN8zBdvn+dVb56DfffJPmn3/+tM8++zQ4hkmTJuXXxHe8rLl5fhSwRKF65HXrrLNOevHFF/PzF110Ud5H7D/S31j3wyeeeCJttdVW+dzFMW200Ub5HrCx8xwtDuP3EffwsX0cT+177pn9rqgcVYFVYuLEiblENC5ecVE5//zz84BM9Wt6zz333HyR2nPPPfOFPZrFRhB4++2356AkRGASteMrrbRSbm4WF5L4Adf+cUcmGvuJvkgHHHBAWm655fLF4+yzz84X1Zn1E9ltt93Sb37zmxxYlAPQEBeECM7ih9+pU6d8HFtssUW+MEdT8Lh4xIXopptuatI5iYy/filxXNDi5mBG4nhi/1GLGZlUlD7vsssu6b333ssFFSGa70fz3/JFNNIXAV5cyOOiPLOBryIDOOyww/J+IxOI8xbKf5vr0EMPTfPNN1++6Me5iRubSFNkTGXRL3jYsGG58OL000/P5/mCCy7IhSoR7JZvWu655558rJEhRLP8uBGIC3UEt80RNwpx4Y9MMgLkcql9BNJxY1JffN8ieIvMNjKraMIYGVBkPNHELmqTw4QJE3JBRdTcxvchMtwI6iLzqq+px/xdvfXWW/lvfDea+5uIZuTXX399/ryiUGnhhRfO6Y6bpDjncVMV4vsVTTvjfMTvMLaPwqfIvOO3Ek3dDz/88Dr7vvzyy3PrgkhH/H7jJqL27y/Sdtppp+XfYBRcxPNxzuPzivMVhQFxYxGBcnxnQ3y3o3l93CTuv//+6Ysvvki/+93v8jmO7gSrrLJKnTTEZx7bxM11/FZ++ctfpp133jm9/fbbNc1UX3jhhfzZx+NIa3wucU7jOvCLX/ziO//egObfR9QW16aZ5bHx+49rdAR99913Xw6WoqAtxqQoi2tABOyRn0T+FwWLv/71r/O1OO4rZtZsPa6JMbBktJyKa0SI/c+Olszf45oceVq8No4pWjpFWuO63hxxzYvgK1qHRcFziPeLz2L33XfPaawt7vEin4nCzkhTXHfvvvvudMwxx+TAOfKbsjhvV199dc6To7Il0la+z6ttTl5jZzf/KYt8IdJ53HHH5XvEuOfZfPPN0/PPP1/nXiDuX+J8xjmM++AIspuSj8Z3MSov4nsSaardQizy8AimY5+huXn+I488km677bZ08MEH58dxnxX32nHf89vf/jZ/L6MgKvLKKACp/V2K/8fxRKF33O9FoX/k83HOYr/1u/NFQXYcX7zHs88+m/PuuP+K89vSvytaUIlW7fLLL4+izQZLt27dSldccUWD7SdPnlzn8dSpU0srrLBCadNNN61Zd/bZZ+d9fPLJJzN836uuuqrUsWPH0iOPPFJn/YUXXphf+9hjj83wtdOnTy8tssgipV122aXO+uuvvz6/9uGHH86Pb7755vz4qaeeKjXXRhtt1Oh5GTZsWH5+9OjR+XFt8bhr166lN998s2bd+PHj8/rzzz+/Zt1+++1XWnjhhUuffvppndfvvvvupd69ezc4x/XdcMMNeZ8PPPBAg+difaStvsUWW6wm7bU/98033zyfz7Ijjzyy1KlTp9J//vOf/PiLL74ozTvvvKX999+/zv4mTJiQ01p7/SqrrJKPq/zacM899+T3ifdvyjlffvnl8/9XX331fJ7C559/ns/ruHHj8jHH/uIclA0dOjQ//9Zbb9Ws++CDD0o9e/YsbbjhhjXrjjjiiPzaJ554ombdxx9/nI8j1r/zzjvNPubGvgeNiXM/99xz599ELPEdOfXUU0sdOnQorbTSSs3+TcTj2Pbll19u8F5xrrfddts6684555z8mquvvrrOb3edddYpzTPPPKVJkybldXEOYrtevXrlc1Nb+VgPOOCAmnXffvttadFFF83Hcdppp9Wsj8+se/fudb5zse2UKVPq7DO2W3DBBUv77rtvzbpyGvr06VP67LPPatbfeuutef2f/vSnmnXx+cbn/I9//KPOfmt/p7/r7w2YvfuI8rWx/JuO7cri2hDrTj755Dr7WnXVVUtDhgypeRzXw9ju97//fZ3t7rrrrkbXNyauvbWvRbXT0FjeNCfy9/I1Oe5byr766qvSUkstNcP8vbFzHvc3v/71r/N1sLzvH/zgB6VNNtmk0fzglltuya/7+c9/Xmd///M//5Ov4+Xje/755/N2Bx10UJ3t9thjjwb3GU095sa+B41pLJ//rvlPeZ9x71jO72rfN5577rkN7v8i752dfPTuu+9ukFeFbbbZprTkkkvWPG5unh/35eX7lHDRRRfl9QsttFCdYzr++OPr3NNEfrj00kuXttxyyzp5Y3wuSyyxROn73/9+g/NcO08OO+20U86Tm/K7onI0L68SUXMczZNiiZLNqBGMUqz6tcK1SwKjRC1KU6OmKUrCyqJGOdx6660zbLobpYNRqrfsssvmkvHyUq7ZrN/ktLYopYwa7j//+c+5Nr4samcXWWSRmgFFyumIWvho8tNcUYJcPiflJUoUZyZKTGuX9kVtf9TARu1ciGtn9Enefvvt8/9rH3uU+Mf5rH0uixYllLWb0cVnGbUP//jHP/LjOOYowY3aydppjZYEUTtR/pw+/PDDXFIctcPRFKns+9///mz1L46S9fjulZvJxftF6XF9kdaoYY8meksuuWTN+qj1jX1ECXKUtIf4vkRpfO0S3SiRj1YbtTX1mJsrmmLF+8USzcCipULUUJSb4Df3NxFNw5p6buPYozldHFNZlMhHDUv8hqJFQG1RexPpbExcF8rinEQfzvguR61GWfz2osli+Xtf3rZc6h/Xhc8++yy3OojXN/adjxqNaIVR+7sZyvuMbhAPP/xwLtEfOHBgndeWv9Ot7fcG7eU+orzMyoEHHljncfzOa1834roYeUrkJbV/v1FjF63OZvd6PDtaMn+Pa3LkUzEQVVk0+S3XGjZH1EpGLWzc60TroPg7o6bl8b5xLY5rf23RMirSXJ61JrYL9berX2s9p6+xs5v/lO299965lUJZnP/4HMrHWxYtvOo3EW9qPhp5drTwqN1iMO6X4/cQ+VpZc/P8aBlRu5VduRVf5Ne1j6m8vnz8cW/2xhtv5O9E1OCX3yfuSWKfkY/Wv1dv7HcZry3fT9E6aV5eJSIQqT0ASlxUVl111dyEJpqvlG+W42IezXniR1y7z0ntwC0uKtEUJS6O0Yw3ftTRLDQubtGkJcQF4O9///sMb+yj2c/MxHtEs6BoahMXkrjgxQWx3BS1HJTExShG+o7mOtEsKIKz2L4pI3pG8+PIZJuj/s1/iMCh3PcsAoUI6KJZcywzO/ZoDl1b3Hg01hT6u6if3nKQU05vfE6hnAnUFzccoRykNzbdV2R+zc10o/lVNA+LG4BoKhbfwdqZSlmcz2j6He9RX2RmkZFEf63oXxZpLGdG9dNXW1OPubmia0I0ew7x/YumW7Wb3jf3N1F/lOCZiWOPz6b8+ysrd0sof35N2Xf970x8L+PY6jcjjfWRSdcW/b+i+Wj0w65dENbY+83qu1m+oYi+dzPSnN8b0LL3EbMS143617va+WX5uhiBW2Ndi2r/fmObCDzL4p6ldreYltCS+Xtcc6PwtX7f8cbyslmJcxj3KtElJ/LDKIyuHczXFu8bTdnr56f184L4G/lF/SbD9dM3p6+x3yX/aeweJc5/fA71+0BHBU79wUObmo/GWEhx7xmfR9wnR34flQiR59UOupub5zd27CH6gTe2vv59XFSKzEj8fmoXcs8s/53deyCKJ+iuUnFRidru6MMdP9gIWqLfR/Q/iT4y0X8kSgejlC/6hcTFpSwCwyg5i1K66HMTA41EiV8EMVErGaWTEQytuOKKedTmxtS/iNQXNZZR4hd9WiOIjmAmMtzaF7TyPI8xoFY8H/2WolYsbvpj3cz6Zs+uOLbGlAcoKZcmRh+hGV0Ao/Q8xPmtLc7z7A5UUX9gmuamN/rvRAnvnBrBPY49Cknis4o+e3NyxPKijjnO9cwKcZr7m2jpApim7rux78ysvkchWtDE9zcKvqL/YNxEx+uiz1i5b3tz9zkrzfm9AXPWjH7j9X/Dca2IwtfGlAOW6E9be0CrKHQvDzA6I/UD3pbKLytxvYn7oBgrIwrro+9uuaVf0eb0Mc9u/tNc3zV/jYqD6NMdFQeR58W9atRox8Brs5vnz+g4m/q9POOMMxqMnVJW/364iHNK8QTdVSyafoZyE+4IfKJEMYLX2jXFEQw2FrRHDXcscUGJ+fxiROEIxMtNtMaPH5+fn1HG15QmVVEoEM1dIqiPIDyC8fpiXSwxgEYUDkRz4hgArnYzpTmlPApoZOqzqkWv3zQvCj7CzM5XlEZGqXNt0UQ7mn/PjnIpd9z0zCy9MQ9r7RLV2l577bXZvomIzyhuHmJalBmdz2iS19h7RG1qfA/LGVeksSnpa+oxt7SW+E3MSBx7DDoWmW/tUvo4R+XnixYFYNEFIEr8ax/f7M4nXu5O8NJLL7XI7w1ofeK6GAOsrbfeejMNhKLrV+2BX2vX2s3oetpYftlYy5+mas71Jq65ce2KIKZ2+mY3v4zuV9HSLyoUajdrbux943xGM/Tatd3184L4G/lFFIjWrt2un75qu8bWvweI8x8DozWlYKA5+WhUTkXlQXwW0eUxBjKrP6tGkXl+/fcJUUPdkp9RkWlm9ujTXaWiGUzUSkfzmnLTmSj5ih9Z7VLgaJJTf4TF6KtZX7l0rdwkPQLmGCnzkksuabBt1FhHX5NZiVrt2F+Ubkdtev3ppKIZTP1SufrpmNPiHEazoyjAaCxYqD1dV1wcay/lmu9o9h4au1mIi2u0MqgtmnzNqOR+VqJPVlyoo9CksX7x5fRG2uLcxmcRzZRqFxzEdFOzI5rHRUAWrSpmNEd0nM8YoT7GD6jdPCxGU40Clsjsyk2hInCPG5IYKbt2+uvXoDT1mFtaS/wmZiSOPWpAat+MRaFazFIQJdxRK1S0csl57d9kTGHy+OOPz9b+4mYvbmxiWpoYAbi28ns05/cGtD5xXYz865RTTmnwXFzDyvlgjG9RO7+MPt9lkWfOKL+M/CoCqbIooJ6dqS6be72Ja/IHH3xQZ8rVaBo+oybasxLX8ZhhI2b+iP7VMxLvG+czRn+vLbrgxf1deQT08t/6o59Ht77aqu0ae+WVV+YCh7I4//GZl4+3pfLRCMrjHiZaWUarudiudkvMovP82uK3EN/1mCGg9jhI3/UzmtHvispR010loglMubQu+pFEwBIlgtEnuxy0xFQRUWsd8/xFLWRsFwOnRH+Y2plWTBMWgV9sHyV/sV0ETtF/tTzI2V577ZWb28RgDVH7HaXYkRFEGmJ91KbPqm/Yaqutlt87Sg8jiK5/QYsAMN43SoDjghMX2ri4xfHMqOZ0ToipLuKYo39xNAeLm4UoqIh+z1EC3VihRW0R3EZGF1M3xA1DtDqIpvtRMxs1w3FOIxOMgWeiFDXO5cymbZmZOFeRkcfnFec7mkxFsBNBTnQdiM+tnHlHM+H4zOMzjmb8cRyRGUUNfWMX+lmJfkmNzTleX4wxUJ4XPqbMiObf0awrvhMxdUbtmpDI/OL7G00Ry1OGlUuvZ+eYW1JL/CZmJAbniXMSzbtj7tFoFRI3G9F0P26iGusv39KiX37UcsfvMb4nMe3PhRdemL//s/P9KN8Qxucen1McY/QNj8KX+Jxi3ImW+L0BlROBTNTgRv4Sv+koZI1ubXF/EgNRRWu3GfVfrh10xG897l+iP3NcJ+J6ENf2mDoqrkkxGFZ5asjvfe97sz34V1OvN/Fc5CMxsFdck8tTPkbLrdk1sz67ZRGQR9fBuG+Ka2U0d44Klii4jkHSyrWicZ8RY/vEPVTcZ8SUYffff3+uFZ7dY24Nop9/5BkxSFoUzkf+F/eRke6WzkfjnjTugaLyIJqR15/atcg8v7YoAIhxlqJgIe7H4tijz3oE/PG+cc9THm+mOWb0u6KCKjhyOrM51cdcc82Vp3+64IIL6kwvEH73u9/lqQdi6oJll102v77+9Br3339/accddyz1798/T7ERf3/4wx+WXn/99Tr7iqkWTj/99DxNVOxvvvnmy1OFnHTSSaWJEyc2Kf0nnHBCfu+YZqO+Z599Nr/vwIED8/779etX2m677UpPP/10s6avasyMphQ5+OCDZzldV/joo4/ytgMGDCh16dIlT/mw2WablS6++OJSU1xyySV56omY3qv29CLTpk0rHXfccaW+ffuWevTokaeIiClAZjRlWP3p1MrTatSfriQex75i+o/4fgwaNKg0fPjwBufyxhtvLC233HL5fA8ePLh00003zXBaluae8xlNJVL+rCN9MW1HHHdMl/LXv/61wetfeOGF/D5xDDF1yCmnnJK/07Wn12jOMTd3yrBZaepvYkbftRlNGVb+zu2zzz75uxG/yxVXXLHB1C3lKV3OOOOMBq8vH2v9qQBndGz1P8+4lsQ0aZG+OLaYGuj2229v8P2YWRoamxLvpZdeytOZxDRv8Tkts8wypVGjRrXo7w2YsRnlJ2UzmjKssevGjK6p8VuNa2FMBRXTY8X169hjj83TQ87Kq6++mqcXjNfWnvqzPK1lTHsa18S4dsR0UHMqf4+pDnfYYYecZ8V1+fDDD6+ZCq05U4bNTGP5QUyLGdODxr1ZpC/u6eJ6W/9+7+uvvy4ddthheaqo+Ky233770vvvv9/odbgpx9wSU4bNbv5T3uc111yTp9SK+8H4PsS5qT/l5MzuRZqSj5bF+Yzz0dgUbS2R588or5zRfdJzzz1X2nnnnfPnGe8V341dd90137PP6jyXv2+175Nm9ruiMjrEP5UM+gEAgPYpBtWLGv5oHTGrlhFQrfTpBgAAgIIIugEAAKAggm4AAAAoiD7dAAAAUBA13QAAAFAQQTcAAAAUpHOqYtOnT08ffPBBnvC+Q4cOlU4OADRL9PD64osvUv/+/VPHju2vHFw+DkB7yMerOuiOjHrAgAGVTgYAfCfvv/9+WnTRRVN7Ix8HoD3k41UddEfJePkge/XqVenkAECzTJo0KQed5fysvZGPA9Ae8vGqDrrLTdEio5ZZA1Ct2mvTavk4AO0hH29/HcgAAABgDhF0AwAAQEEE3QAAAFCQqu7TDVA2bdq09M0331Q6GVBHly5dUqdOnSqdDACgggTdQNXPjzhhwoT0n//8p9JJgUbNO++8aaGFFmq3g6UBQHsn6AaqWjng7tevX+rRo4fAhlZVIDR58uT08ccf58cLL7xwpZMEAFSAoBuo6ibl5YC7T58+lU4ONNC9e/f8NwLv+J5qag4A7Y+B1ICqVe7DHTXc0FqVv5/GHACA9knQDVQ9TcppzXw/AaB9E3QDAABAQQTdAFSk9veWW25p8vbDhw9PQ4cOLTRNAABFMJAa0CYtPvKOOfp+7562bbO2jyBy3LhxNY/nn3/+tMYaa6Rf/vKXaaWVVkqVcsUVV6R99tknLbvssunvf/97neduuOGGtOuuu6bFFlssvfvuuxVLIwBANVHTDVAhW221Vfrwww/zcv/996fOnTun7bbbrtLJSnPPPXcebfvxxx+vs/53v/tdGjhwYMXSBQBQjQTdABXSrVu3tNBCC+VllVVWSSNHjkzvv/9++uSTT2q2Oe6449L3vve9PAL2kksumUaNGlVnFOzx48enTTbZJPXs2TP16tUrDRkyJD399NM1zz/66KNpgw02yFNXDRgwIB122GHpq6++mmm6IvjfY4890mWXXVaz7p///Gd68MEH8/r6LrjggjRo0KDUtWvXtMwyy6SrrrqqzvNvvPFG2nDDDdNcc82VBg8enO69994G+4jjjlr0eeedN9f677jjjmrTAYA2QdAN0Ap8+eWX6eqrr05LLbVUnTnHI5iOJt+vvPJKOvfcc9Mll1ySzj777Jrn99xzz7Toooump556Kj3zzDM5cO/SpUt+7q233sq16bvsskt64YUX0nXXXZeD8EMOOWSW6dl3333T9ddfnyZPnpwfRxpiXwsuuGCd7W6++eZ0+OGHp6OOOiq99NJL6Sc/+Ulunv7AAw/k56dPn5523nnnHJA/8cQT6cILL8wFCbVFIcKWW26Zj/WRRx5Jjz32WJpnnnny+02dOvU7nlkAgMrSpxugQm6//fYcXIaofV544YXzuo4d/1956Iknnljz/8UXXzwdffTR6dprr03HHntsXvfee++lY445JvfBDksvvXTN9mPHjs1B+RFHHFHz3HnnnZc22mijXDsdNc8zsuqqq+aa9T/+8Y9pr732ykH3WWedld5+++0625155pm5f/pBBx2UH48YMSL97W9/y+ujBv6+++5Lr776arr77rtT//798zannnpq2nrrrWv2EYUBEZxfeumlNdNrXX755bnWO2rXt9hii+90ngEAKklNN0CFRFD6/PPP5+XJJ5/Mtb0RjP7jH/+oE5Cut956uQl6BOgRhEegXRZB7o9//OO0+eabp9NOOy3Xbtdueh7BcryuvMR7RID7zjvvNKm2O4Lfhx56KBcKbLPNNg22icHWIn21xePyIGzxN5q1lwPusM4669TZPtL55ptv5prucjqjifl///vfOscDAFCNBN0AFRywLJqTxxIjl0dNbwS30YQ8xEBmUVMdwW7UgD/33HPphBNOqNPkesyYMenll19O2267bfrLX/6S+0xHk+9yk/Vo7l0O7GOJADf6WEcf7FmJ945a63iPqO2Ovt5FiHRGX/Ta6Yzl9ddfb7QPOQBANdG8HKCViKbV0bT866+/zo//+te/5um5ItAuq10LXhYDrcVy5JFHph/+8Ie5dnqnnXZKq622Wu4LHkH97Ija5h122CH37Y6+2I1Zbrnlch/sYcOG1ayLxxH8l5+PQdJihPZoPh8ikK8t0hk1+v369cuDwQEAtCVqugEqZMqUKWnChAl5iWbYhx56aK713X777Wv6YEdT8ujDHc2soz92uRY7RHAeg6JFv+cIxiPYjQHVItANMWBZBO6xTdQcRw33rbfe2qSB1Mqiefqnn35a02e8vuhPHttEH/HYf/T7vummm3Lf8xDN3qNAIILyqGWPgdJqFyKUa9T79u2bRyyP56PpexxTjLQeo6YDAFQzNd0AFXLXXXfV1P5Gf+YIbG+44Ya08cYb53VRyxy11xEkR4AeTchjyrBo7h06deqU/v3vf6e99947ffTRRzlwjZHCTzrppPz8SiutlPtjR5Ab04aVSqXcrHy33XZrchpjqrFYZmTo0KF5VPUYOC1GMV9iiSVyTXv5GKLmPgoK9ttvv7TmmmvmweCi8CBGJi+L6dAefvjhXEgQ6f/iiy/SIosskjbbbDM13zRbh5P+bzC+1qw0ulTpJAAwB3UoxV1YlZo0aVLq3bt3mjhxYuu7MRvTu4X2M7Fl9gMFWXzkHS2yn3fnan7f3f/OMyC9s96v0hKLLJDm6twhpf6rtkhaoCXFgHBRex8FEvVHjG/V+dgcUMTxC7oBaG35mOblAAAAUBBBNwAAABRE0A0AAAAFEXQDAABAQQTdAAAAUBBBNwAAABRE0A0AAAAFEXQDAABAQQTdAAAAUBBBN0Ars/HGG6cjjjgitTcPPvhg6tChQ/rPf/5T0XSMGTMmrbLKKk3e/t13383pfv755wtNFwBQnTpXOgEAhRjTew6/38RmbT58+PA0bty4BuvfeOONdNNNN6UuXbqkORHcR3B5zjnnpGqx+OKLp3/84x/pmmuuSbvvvnud55Zffvn0yiuvpMsvvzyfXwCA1kBNN0CFbLXVVunDDz+ssyyxxBJp/vnnTz179qx08lqtAQMG5MC6tr/97W9pwoQJae65565YugAAGiPoBqiQbt26pYUWWqjO0qlTpwbNy6N299RTT0377rtvDsYHDhyYLr744jr7ev/999Ouu+6a5p133hy077jjjrnZ84xETfBDDz2Uzj333Nw0OpbY/oorrsj7qO2WW27Jz9dvfn3VVVfltPXu3TvXOn/xxRc120yfPj2NHTs2FyJ07949rbzyyumPf/xjnf3++c9/Tt/73vfy85tssslM01vbnnvumdMex1x22WWX5fWdO9dtwPXee+/lczHPPPOkXr165XP00Ucf1dnmtNNOSwsuuGA+t/vtt1/673//2+A9L7300rTccsulueaaKy277LLpt7/9bZPSCgAg6AaoAr/61a/S6quvnp577rl00EEHpf/93/9Nr732Wn7um2++SVtuuWUOGh955JH02GOP5SAzatKnTp3a6P4i2F5nnXXS/vvvX1PLHjXITfXWW2/lYPz222/PSwTBEbyWRcB95ZVXpgsvvDC9/PLL6cgjj0w/+tGP8nYhAuadd945bb/99rkv9I9//OM0cuTIJr13BMhxvOXm+ZMnT07XXXddLpSoLQL/CLg/++yz/L733ntvevvtt9Nuu+1Ws83111+fCxGiUOPpp59OCy+8cIOA+ve//3362c9+ln7xi1+kv//973nbUaNGNdo9AACgPn26ASokgtUIjsu23nrrdMMNNzS67TbbbJOD7XDcccels88+Oz3wwANpmWWWyQFnBJhRG1uukY7m11FjHYOTbbHFFg32F7XTXbt2TT169Mg17M0V7xe14uVm8HvttVe6//77c2A6ZcqUHJjed999ObAPSy65ZHr00UfTRRddlDbaaKN0wQUXpEGDBuXChBDH8eKLL6bTTz+9Se8fAfZRRx2VTjjhhFyDHvuqP/hZpCf2+c4779QUKERBQPT9fuqpp9Iaa6yR+7NH7XYs4ec//3lOd+3a7tGjR+d0RiFBiNr76DsexzJs2LBmnzsAoH1R0w1QIdGkOmp5y8t55503w21XWmmlmv9HYB2B8scff5wfjx8/Pr355ps5AI4gPpZoYh6BY9RIR+13eX0sUXP7XUWz8tr9zqOGuJyeSEvUPn//+9+v874R8EZ6QtQYr7XWWnX2WQ7Qm2LbbbdNX375ZXr44Ydz0/L6tdzl94hgu3YN/uDBg3NhRDzXlHR89dVXOc0RlNc+lgjOy8cCADAzaroBKiQG/VpqqaWatG390cwj8I7a5hDB55AhQxoNphdYYIFco117Oqtonj0jHTt2TKVSqc66aL7e3PSEO+64Iy2yyCIN+rG3hOi7HbXrUQv9xBNPpJtvvjkVoXwsl1xySYPgPPrfAwDMiqAboMqtttpquYl5v3798mBhjWksuI9gfNq0aQ2C9BgQLWp4yyOBN3f+6ahNjuA6BjGLpuSNiUHJbrvttgYjkDdH1G6feeaZuY/2fPPN1+h7RN/xWMq13dEsPOYBjzSWt4mgfe+99240HVFA0b9//9wXPAZqAwBoLkE3QJWLYPCMM87Ig4adfPLJadFFF81zWcd838cee2x+PKMm4hFwxqjh5SbpUZsb/bx/+tOfpsMOOyw/H323myOanR999NF58LSo/V5//fXTxIkT8wBvUSgQ/aAPPPDA3E/6mGOOyYOoPfPMM81+nwiYP/3005zexmy++eZpxRVXzOcn+m5/++23uV98FATEoHTh8MMPzyO5x+P11lsvtxaIgd+iD3rZSSedlM9F9IOPwemiz3oMuvb555+nESNGNCvNAED7o083QJWLoDP6NsdUYjHYVwSj5amvZlTzHSIwjibSUesbNdxRMx2B99VXX52n84qA9ZprrsmjezfXKaeckkf4jlHMIz0RrEZz8xiELERab7zxxjwCekwnFqOcx+BrzdWnT5885Vhjosn7rbfemmvBN9xwwxyERzAdrQLKopY80hmFE9FEPworYmT42qJQIAapi8Hp4pxE0B4FBOVjAQCYmQ6l+p33qsikSZNyzUPUoMzsxrIixvRuof1MbJn9QEEWH3lHi+zn3bn2aPZr/jvPgPTOer9KSyyyQJqrc4eU+q/aImmBlhSFHzGCegTpMc931eRjc0ARx9/hpP83p3xrVRpdtbdeAMxGPqamGwAAAAoi6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AaqV2l6/JOmGwiYVizmKgcA2q/OlU4AwOzqOvmj1PHrz9IHn/dKC/SeK3X9+us8NzO0BjEj59SpU9Mnn3ySOnbsmLp27VrpJAEAFSDoBqpWx9K3aYknR6UPl903fbDAKin9t3ulkwQN9OjRIw0cODAH3gBA+yPoBqpa1/9+mgY+f0b6tmuvNG3E65VODtTRqVOn1LlzZy0wAKAdE3QDVa9DKqUuUyemLnPNVemkAABAHdq6AQAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcA8J385je/SYsvvniaa6650lprrZWefPLJSicJAFoNQTcAMNuuu+66NGLEiDR69Oj07LPPppVXXjltueWW6eOPP6500gCgVehc6QQAANXrrLPOSvvvv3/aZ5998uMLL7ww3XHHHemyyy5LI0eObNI+pk2blpcWMT21ei12rABUxfW8c6UTOWbMmHT11VenCRMmpP79+6fhw4enE088MXXo0KGSSQMAZmHq1KnpmWeeSccff3zNuo4dO6bNN988Pf744w22nzJlSl7KJk2alP/ec889qUePHi2TqDdSq/fnP/+50kkAoAVMnjy59Qfdp59+errgggvSuHHj0vLLL5+efvrpXFLeu3fvdNhhh1UyaQDALHz66ae5AH3BBRessz4ev/rqqw22Hzt2bDrppJMKTdNtP7yt0P3Tzu2wQ2rVbvP9h9aookH3X//617TjjjumbbfdNj+OQViuueYaA7AAQBsUNeLR/7t2TfeAAQPSFltskXr16lXRtEGbsM02lU4BtCuT/v8WW6066F533XXTxRdfnF5//fX0ve99L40fPz49+uijuX8YANC69e3bN3Xq1Cl99NFHddbH44UWWqjB9t26dctLfbGPWIDvyO8I5qim5l0VDbpjgJUoHVh22WVzgqOJ2i9+8Yu05557Nrr9jPqCAQBzXteuXdOQIUPS/fffn4YOHZrXTZ8+PT8+5JBDKp08AGgVKhp0X3/99en3v/99+sMf/pD7dD///PPpiCOOyAOqDRs2rCJ9wRYfeUeL7OfduVLFtdyx7NEi+0ljJs72Sx1LQ++e9n/dMmg5vmcNOZaWPZa2KJqLR569+uqrpzXXXDOdc8456auvvqoZzRwA2ruKBt3HHHNMru3efffd8+MVV1wx/eMf/8jBdWNB94z6ggEAlbHbbrulTz75JP3sZz/LM5Gsssoq6a677mowuBoAtFedKz3EekwtUls0M4+maY2ZUV8wAKByoim55uQA0AqD7u233z734R44cGBuXv7cc8/lQdT23XffSiYLAAAAqj/oPv/889OoUaPSQQcdlD7++OPcl/snP/lJbqIGAAAA1a6iQXfPnj3zgCuxAAAAQFtTt0M1AAAA0GIE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwDN9u6776b99tsvLbHEEql79+5p0KBBafTo0Wnq1KmVThoAtCqdK50AAKD6vPrqq2n69OnpoosuSksttVR66aWX0v7775+++uqrdOaZZ1Y6eQDQagi6AYBm22qrrfJStuSSS6bXXnstXXDBBYJuAKhF0A0AtIiJEyem+eeff4bPT5kyJS9lkyZNmkMpA4DK0acbAPjO3nzzzXT++eenn/zkJzPcZuzYsal37941y4ABA+ZoGgGgEgTdAECNkSNHpg4dOsx0if7ctf3rX//KTc1/8IMf5H7dM3L88cfn2vDy8v7778+BIwKAytK8HACocdRRR6Xhw4fPdJvov132wQcfpE022SStu+666eKLL57p67p165YXAGhPBN0AQI0FFlggL00RNdwRcA8ZMiRdfvnlqWNHDegAoL6K546RYf/oRz9Kffr0yfN8rrjiiunpp5+udLIAgFnk3xtvvHEaOHBgHq38k08+SRMmTMgLANBKaro///zztN566+VS8jvvvDOXrL/xxhtpvvnmq2SyAIBZuPfee/PgabEsuuiidZ4rlUoVSxcAtDYVDbpPP/30PHJpNEkrW2KJJSqZJACgCaLf96z6fgMAFW5eftttt6XVV189j3bar1+/tOqqq6ZLLrlkhtvH3J4xp2ftBQAAAFqrigbdb7/9drrgggvS0ksvne6+++70v//7v+mwww5L48aNa3R783sCAABQTSoadE+fPj2tttpq6dRTT8213AcccECe3/PCCy9sdHvzewJAQw8//HD69ttvG6yPdfEcANBOg+6FF144DR48uM665ZZbLr333nuNbh9ze/bq1avOAgDtXQxI+tlnnzVYHwXU8RwA0E6D7hi5/LXXXquz7vXXX0+LLbZYxdIEANUmRgvv0KFDg/X//ve/09xzz12RNAEArWD08iOPPDKtu+66uXn5rrvump588sl08cUX5wUAmLmdd945/42AO0YSjxZhZdOmTUsvvPBCzmcBgHYadK+xxhrp5ptvzn21Tz755Dxd2DnnnJP23HPPSiYLAKpCDCparunu2bNn6t69e81zXbt2TWuvvXYeKwUAaKdBd9huu+3yAgA0z+WXX57/Lr744unoo4/WlBwAWqGKB90AwHczevToSicBAGiNA6kBAN/dRx99lPbaa6/Uv3//1Llz59SpU6c6CwBQOWq6AaDKxSBqMd3mqFGj8nScjY1kDgBUhqAbAKrco48+mh555JG0yiqrVDopAEA9mpcDQJUbMGBAHsEcAGh9BN0AUOVius2RI0emd999t9JJAQDq0bwcAKrcbrvtliZPnpwGDRqUevTokbp06VLn+c8++6xiaQOA9k7QDQBtoKYbAGidBN0AUOWGDRtW6SQAADOgTzcAtAFvvfVWOvHEE9MPf/jD9PHHH+d1d955Z3r55ZcrnTQAaNcE3QBQ5R566KG04oorpieeeCLddNNN6csvv8zrx48fn0aPHl3p5AFAuyboBoAqFyOX//znP0/33ntv6tq1a836TTfdNP3tb3+raNoAoL0TdANAlXvxxRfTTjvt1GB9v3790qefflqRNAEA/0fQDQBVbt55500ffvhhg/XPPfdcWmSRRSqSJgDg/wi6AaDK7b777um4445LEyZMSB06dEjTp09Pjz32WDr66KPT3nvvXenkAUC7JugGgCp36qmnpmWXXTYNGDAgD6I2ePDgtOGGG6Z11103j2gOAFSOeboBoMrF4GmXXHJJGjVqVHrppZdy4L3qqqumpZdeutJJA4B2T9ANAG3EwIED8wIAtB6CbgCocqVSKf3xj39MDzzwQPr4449zn+7aYu5uAKAyBN0AUOWOOOKIdNFFF6VNNtkkLbjggnkwNQCgioPub775Jo+QOnny5LTAAguk+eefv+VTBgA0yVVXXZVrs7fZZptKJwUAmN3Ry7/44ot0wQUXpI022ij16tUrLb744mm55ZbLQfdiiy2W9t9///TUU081dXcAQAvp3bt3WnLJJSudDABgdoPus846KwfZl19+edp8883TLbfckp5//vn0+uuvp8cffzyNHj06ffvtt2mLLbZIW221VXrjjTeaslsAoAWMGTMmnXTSSenrr7+udFIAgNlpXh412A8//HBafvnlG31+zTXXTPvuu2+68MILc2D+yCOPmKYEAOaQXXfdNV1zzTWpX79+uZC8S5cudZ5/9tlnK5Y2AGjvmhR0R0beFN26dUsHHnjgd00TANAMw4YNS88880z60Y9+ZCA1AGgro5dPmTKlJtAGACrnjjvuSHfffXdaf/31K50UAGB2B1IL9957bx4Zdb755ks9evTIS/w/1t13333N2RUA0EIGDBiQBzkFAKo46B43blwOrmOE1LPPPjvdfvvteYn/zzvvvPm5mLIEAJizfvWrX6Vjjz02vfvuu5VOCgAwu83Lf/GLX6RzzjknHXzwwQ2eGz58eG7SdvLJJ6e99tqrqbsEAFpA9OWePHlyGjRoUG6FVn8gtc8++6xiaQOA9q7JQfd7772Xpwubkc022ywdddRRLZUuAKCJolAcAKjyoDumC/vd736XfvnLXzb6/GWXXZYGDx7ckmkDAJo4ejkAUOVBd/QX22677dJdd92Va7xjSpLw0Ucfpfvvvz+9/fbbefRUAGDOe+utt9Lll1+e/5577rl5zu4777wzDRw4MBecAwCtfCC1jTfeOL300ktp6623znOBRs12LPH/WPfiiy+mDTfcsNjUAgANPPTQQ2nFFVdMTzzxRLrpppvSl19+mdePHz8+jR49utLJA4B2rVnzdC+++OLp9NNPLy41AECzjRw5Mv385z9PI0aMSD179qxZv+mmm6Zf//rXFU0bALR3zZqnGwBofaK12U477dRgfTQx//TTTyuSJgCghYPuaMLWqVOnltodANBE8847b/rwww8brH/uuefSIossUpE0AQAF1HSXSqWW3B0A0AS77757Ou6449KECRNShw4d0vTp09Njjz2Wjj766LT33ntXOnkA0K41uU/3zjvvPNPnJ06cmDN6AGDOOvXUU9PBBx+cBgwYkKZNm5an8Iy/e+yxRzrxxBMrnTwAaNeaHHT/6U9/St///vdrpgqrLzJ3AGDO69q1a7rkkkvSqFGj8kwjMXr5qquumpZeeulKJw0A2r0mB93LLbdc2mWXXdJ+++3X6PPPP/98uv3221sybQBAEzz66KNp/fXXz3NyxwIAVGGf7iFDhqRnn312hs9369ZNRg8AFRBTgy2xxBLppz/9aXrllVcqnRwAYHaC7gsvvDCdccYZM60Jf+edd5q6OwCghXzwwQfpqKOOSg899FBaYYUV0iqrrJLz7H/+85+VThoAtHtNDrqjJrtHjx7FpgYAaLa+ffumQw45JI9Y/tZbb6Uf/OAHady4cWnxxRfPteAAQJVOGbbttts2Oi8oAFAZ0cx85MiR6bTTTksrrrhirv0GAKo06H744YfT119/3XKpAQBmW9R0H3TQQWnhhRfO04VFU/M77rij0skCgHatyaOXAwCt0/HHH5+uvfba3Lc7pvc899xz04477qhbGABUe9C92GKLpS5durRcagCA2Wp5dswxx6Rdd9019+8GANpI0P3SSy+1XEoAgNluVg4AtJGg+8knn0yPP/54mjBhQn680EILpXXWWSetueaaRaQPAGiCGLX8nHPOSX//+9/z48GDB6fDDz88DRo0qNJJA4B2rclB98cff5x22WWXXJo+cODAtOCCC+b1H330UTryyCPTeuutl2688cbUr1+/ItMLANRz9913px122CHPzx35cYj8evnll09/+tOfcj9vAKCVB90xGuq0adNyCfoyyyxT57nXXnst7bvvvunggw9ON9xwQxHpBABmIKYIiwLwmCas/vrjjjtO0A0A1TBlWJSi/+Y3v2kQcIdYd95556W77rqrpdMHAMxCFIjvt99+DdZHgfgrr7xSkTQBAM0Murt165YmTZo0w+e/+OKLvA0AMGctsMAC6fnnn2+wPtbp9gUAVdK8fLfddkvDhg1LZ599dtpss81Sr1698voIxO+///40YsSI9MMf/rDItAIAjdh///3TAQcckN5+++207rrr1vTpPv3003P+DABUQdB91llnpenTp6fdd989ffvtt6lr1655/dSpU1Pnzp1zs7YzzzyzyLQCAI0YNWpU6tmzZ/rVr36Vjj/++Lyuf//+acyYMemwww6rdPIAoF1rctAdTccvuOCCXGr+zDPP1JkybMiQITU13wDAnBMF4X/4wx/SHnvskQdTi+5eIYJwAKAK5+mO4HqTTTYpJjUAQLNEa7MDDzywZn5uwTYAVOFAatdee22Td/j+++/nfmQAwJyx5pprpueee67SyQAAZjfojmblyy23XPrlL39ZU5Je28SJE9Of//zn3LRttdVWS//+97+bslsAoAUcdNBB6aijjkq//vWv0+OPP55eeOGFOgsA0Mqblz/00EPptttuS+eff34eoGXuuedOCy64YJprrrnS559/nvt39+3bNw0fPjy99NJL+TkAYM6IQU5D7UHTOnTokEqlUv47bdq0CqYOANq3Jvfp3mGHHfLy6aefpkcffTT94x//SF9//XUOtlddddW8dOzY5Gm/AYAW8s4771Q6CQBASw2kFkH20KFDm/syAKAgiy22WKWTAAC0VNANALQ+r732Wu4GVh57JcZiOfTQQ9MyyyxT6aQBQLumPTgAVLkbb7wxrbDCCumZZ55JK6+8cl6effbZvC6eAwAqR003AFS5Y489Ng90evLJJ9dZP3r06PzcLrvsUrG0AUB7p6YbAKrchx9+mPbee+8G63/0ox/l5wCAKgy6p06dmvuPffvtty2bIgCgWTbeeOP0yCOPNFgfs41ssMEGFUkTADCbzcsnT56cB2YZN25cfvz666+nJZdcMq9bZJFF0siRI5u7SwDgO4gpPY877rjcp3vttdfO6/72t7+lG264IZ100knptttuq7MtANCKg+7oMzZ+/Pj04IMPpq222qpm/eabb57GjBkj6AaAOeyggw7Kf3/729/mpbHnQocOHdK0adPmePoAoD1rdtB9yy23pOuuuy6XpEfmXbb88sunt956q6XTBwDMwvTp0yudBACgpfp0f/LJJ6lfv34N1n/11Vd1gnAAAABo75pd07366qunO+64I/fhDuVA+9JLL03rrLNOy6cQAJilp556Kj3wwAPp448/blDzfdZZZ1UsXQDQ3jU76D711FPT1ltvnV555ZU8cvm5556b///Xv/41PfTQQ8WkEgCYad584oknpmWWWSYtuOCCdVqeaYUGAFUWdK+//vp5ILWxY8emFVdcMd1zzz1ptdVWS48//nh+DADMWVEAftlll6Xhw4dXOikAwHcJur/55pv0k5/8JI0aNSpdcsklzXkpAFCQjh07pvXWW6/SyQAAvutAal26dEk33nhjc14CABTsyCOPTL/5zW8qnQwAoCWalw8dOjRPGxYZPABQeUcffXTadttt06BBg9LgwYNzIXltN910U8XSBgDtXbOD7qWXXjqdfPLJ6bHHHktDhgxJc889d53nDzvssJZMHwAwC5H3xsjlm2yySerTp4/B0wCgmoPu3/3ud2neeedNzzzzTF5qi0xe0A0Ac9a4ceNy96+o7QYAqjzofuedd4pJCQAwW+aff/7ctBwAqPKB1OorlUp5AQAqZ8yYMWn06NFp8uTJlU4KANASQfeVV16Z5+Tu3r17XlZaaaV01VVXzc6uAIDv6Lzzzkt33nlnWnDBBXP+vNpqq9VZAIAqal5+1lln5Xm6DznkkJo5QR999NF04IEHpk8//dSo5gAwh8XMIgBAGwm6zz///HTBBRekvffeu2bdDjvskJZffvncvE3QDQBzVjQtr6QpU6aktdZaK40fPz4999xzaZVVVqloegCgqpuXf/jhh2nddddtsD7WxXMAQPty7LHHpv79+1c6GQDQNoLupZZaKl1//fUN1l933XV5Dm8AYM6Yb7758sjls1qKFH3J77nnnnTmmWcW+j4A0G6al5900klpt912Sw8//HBNn+7HHnss3X///Y0G4wBAMc4555yKvv9HH32U9t9//3TLLbekHj16NKkZeixlkyZNKjiFAFCFQfcuu+ySnnjiiXT22WfnTDYst9xy6cknn0yrrrpqEWkEABoxbNiwir13TBk6fPjwPJDq6quvnt59991Zvmbs2LG58B4A2pNmB91hyJAh6eqrr2751AAAFTVy5Mh0+umnz3Sbv//977lJ+RdffJGOP/74Ju87th0xYkSdmu4BAwZ8p/QCQJsLuv/85z+nTp06pS233LLO+rvvvjtNnz49bb311i2ZPgBgDjrqqKNyDfbMLLnkkukvf/lLevzxx1O3bt3qPBe13nvuuWcaN25cg9fFtvW3B4C2rvPslICfdtppjTYzi+cE3QBQvRZYYIG8zMp5552Xfv7zn9c8/uCDD3KBfAysGtOHAQCzGXS/8cYbafDgwQ3WL7vssunNN99s7u4AgCo0cODAOo/nmWee/HfQoEFp0UUXrVCqAKANTBnWu3fv9PbbbzdYHwH33HPP3VLpAgCaaerUqem1115L3377baWTAgDMbtC94447piOOOCK99dZbdQLu6AO2ww47NHd3AMB3NHny5LTffvvlabuWX3759N577+X1hx56aKNdwoqw+OKL565mq6yyyhx5PwBos0H3L3/5y1yjHc3Jl1hiibzElGF9+vRJZ555ZjGpBABmOir4+PHj04MPPpjmmmuumvWbb7557mMNAFRRn+5oXv7Xv/413XvvvTmD7969e1pppZXShhtuWEwKAYCZuuWWW3Jwvfbaa6cOHTrUrI9a79ot0wCAKqjpDpGhb7HFFumYY45JhxxySIsE3NH8LfYbTdcBgKb75JNPUr9+/Rqs/+qrr+oE4QBAKw66Yy7O22+/vc66K6+8Mjcvj4z+gAMOSFOmTJmtRDz11FPpoosuyjXmAEDzxNzYd9xxR83jcqB96aWXpnXWWaeCKQMAmty8/OSTT04bb7xx2m677fLjF198MQ/aMnz48Nyn+4wzzkj9+/dPY8aMaVYCvvzyy7TnnnumSy65pM58nwBA05x66qlp6623Tq+88koeufzcc8/N/4/uYA899FClkwcA7VqTa7qff/75tNlmm9U8vvbaa9Naa62Vg+URI0ak8847L11//fXNTsDBBx+ctt122zzYy6xETfqkSZPqLADQ3q2//vp5nJUIuFdcccV0zz335FZo0UptyJAhlU4eALRrTa7p/vzzz9OCCy5Y8zhKzqNUvWyNNdZI77//frPePAL3Z599Njcvb4qxY8emk046qVnvAQBt2TfffJN+8pOfpFGjRuWCcACgSmu6I+B+55138v+nTp2ag+UYJbXsiy++SF26dGnyG0eAfvjhh6ff//73daY3mdWUKBMnTqxZmhvkA0BbE3nvjTfeWOlkAADfNejeZptt0siRI9MjjzySg98ePXqkDTbYoOb5F154IQ0aNKipu0vPPPNM+vjjj9Nqq62WOnfunJeoPY9m6vH/adOmNXhNt27dUq9eveosANDeDR06NE8bBgBUcfPyU045Je28885po402SvPMM08aN25c6tq1a83zl112WZ5GrKmif3gMxlbbPvvsk5Zddtl03HHHpU6dOjV5XwDQni299NJ5wNPHHnss9+Gee+656zx/2GGHVSxtANDeNTno7tu3b3r44Ydzs+4IuusHxTfccENe31Q9e/ZMK6ywQp11cZPQp0+fBusBgBn73e9+l+add97ciiyW2mL6MEE3AFRB0F3Wu3fvRtfPP//8LZEeAKCZymOuAABtIOgu0oMPPljpJABAVSuVSjU13ABAFQ2kBgC0XldeeWWeo7t79+55WWmlldJVV11V6WQBQLvXqmq6AYDmO+uss/I83Yccckhab7318rpHH300HXjggenTTz9NRx55ZKWTCADtlqAbAKrc+eefny644IK0995716zbYYcd0vLLL5/GjBkj6AaACtK8HACq3IcffpjWXXfdButjXTwHAFSOoBsAqtxSSy2Vrr/++gbrr7vuujyHNwBQOZqXA0CVO+mkk9Juu+2WHn744Zo+3Y899li6//77Gw3GAYA5R003AFS5XXbZJT3xxBOpb9++6ZZbbslL/P/JJ59MO+20U6WTBwDtmppuAGgDhgwZkq6++upKJwMAqEdNNwBUuT//+c/p7rvvbrA+1t15550VSRMA8H8E3QBQ5UaOHJmmTZvWYH2pVMrPAQCVI+gGgCr3xhtvpMGDBzdYv+yyy6Y333yzImkCAP6PoBsAqlzv3r3T22+/3WB9BNxzzz13RdIEAPwfQTcAVLkdd9wxHXHEEemtt96qE3AfddRRaYcddqho2gCgvRN0A0CV++Uvf5lrtKM5+RJLLJGX5ZZbLvXp0yedeeaZlU4eALRrpgwDgDbQvPyvf/1ruvfee9P48eNT9+7d00orrZQ23HDDSicNANo9QTcAtAEdOnRIW2yxRV4AgNZD83IAqFKPP/54uv322+usu/LKK3Pz8n79+qUDDjggTZkypWLpAwAE3QBQtU4++eT08ssv1zx+8cUX03777Zc233zzPD/3n/70pzR27NiKphEA2jtBNwBUqeeffz5tttlmNY+vvfbatNZaa6VLLrkkjRgxIp133nnp+uuvr2gaAaC9E3QDQJX6/PPP04ILLljz+KGHHkpbb711zeM11lgjvf/++xVKHQAQBN0AUKUi4H7nnXfy/6dOnZqeffbZtPbaa9c8/8UXX6QuXbpUMIUAgKAbAKrUNttsk/tuP/LII+n4449PPXr0SBtssEHN8y+88EIaNGhQRdMIAO2dKcMAoEqdcsopaeedd04bbbRRmmeeedK4ceNS165da56/7LLLTCEGABUm6AaAKtW3b9/08MMPp4kTJ+agu1OnTnWev+GGG/J6AKByBN0AUOV69+7d6Pr5559/jqcFAKhLn24AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AYLbdcccdaa211krdu3dP8803Xxo6dGilkwQArUrnSicAAKhON954Y9p///3TqaeemjbddNP07bffppdeeqnSyQKAVkXQDQA0WwTYhx9+eDrjjDPSfvvtV7N+8ODBFU0XALQ2mpcDAM327LPPpn/961+pY8eOadVVV00LL7xw2nrrrdV0A0A9gm4AoNnefvvt/HfMmDHpxBNPTLfffnvu073xxhunzz77rNHXTJkyJU2aNKnOAgBtnaAbAKgxcuTI1KFDh5kur776apo+fXre/oQTTki77LJLGjJkSLr88svz8zfccEOj+x47dmzq3bt3zTJgwIA5fHQAMOfp0w0A1DjqqKPS8OHDZ7rNkksumT788MMGfbi7deuWn3vvvfcafd3xxx+fRowYUfM4aroF3gC0dYJuAKDGAgsskJdZiZrtCLJfe+21tP766+d133zzTXr33XfTYost1uhrYvtYAKA9EXQDAM3Wq1evdOCBB6bRo0fn2uoItGMk8/CDH/yg0skDgFZD0A0AzJYIsjt37pz22muv9PXXX6e11lor/eUvf8kDqgEA/0fQDQDMli5duqQzzzwzLwBA44xeDgAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAADQFoPusWPHpjXWWCP17Nkz9evXLw0dOjS99tprlUwSAAAAtI2g+6GHHkoHH3xw+tvf/pbuvffe9M0336QtttgiffXVV5VMFgAAALSIzqmC7rrrrjqPr7jiilzj/cwzz6QNN9ywYukCAACANtene+LEifnv/PPPX+mkAAAAQHXXdNc2ffr0dMQRR6T11lsvrbDCCo1uM2XKlLyUTZo0aQ6mEAAAAKq0pjv6dr/00kvp2muvnenAa717965ZBgwYMEfTCAAAAFUXdB9yyCHp9ttvTw888EBadNFFZ7jd8ccfn5ugl5f3339/jqYTAAAAqqZ5ealUSoceemi6+eab04MPPpiWWGKJmW7frVu3vAAAAEA16FzpJuV/+MMf0q233prn6p4wYUJeH03Hu3fvXsmkAQAAQHU3L7/gggtyM/GNN944LbzwwjXLddddV8lkAQAAQNtoXg4AAABtVasYSA0AAADaIkE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3ADBbXn/99bTjjjumvn37pl69eqX1118/PfDAA5VOFgC0KoJuAGC2bLfddunbb79Nf/nLX9IzzzyTVl555bxuwoQJlU4aALQagm4AoNk+/fTT9MYbb6SRI0emlVZaKS299NLptNNOS5MnT04vvfRSpZMHAK2GoBsAaLY+ffqkZZZZJl155ZXpq6++yjXeF110UerXr18aMmRIpZMHAK1G50onAACoPh06dEj33XdfGjp0aOrZs2fq2LFjDrjvuuuuNN988zX6milTpuSlbNKkSXMwxQBQGWq6AYAa0Vw8AuqZLa+++moqlUrp4IMPzoH2I488kp588skcgG+//fbpww8/bHTfY8eOTb17965ZBgwYMMePD76TUql1L0CrpKYbAKhx1FFHpeHDh890myWXXDIPnnb77benzz//PI9cHn7729+me++9N40bNy4H7/Udf/zxacSIEXVqugXeALR1gm4AoMYCCyyQl1mJAdNCNCuvLR5Pnz690dd069YtLwDQnmheDgA02zrrrJP7bg8bNiyNHz8+z9l9zDHHpHfeeSdtu+22lU4eALQagm4AoNn69u2bB0378ssv06abbppWX3319Oijj6Zbb701z9cNAPwfzcsBgNkSgfbdd99d6WQAQKumphsAAAAKIugGAACAggi6AQAAoCCCbgAAACiIoBsAAAAKIugGAACAggi6AQAAoCCCbgAAACiIoBsAAAAKIugGAACAggi6AQAAoCCCbgAAAGjLQfdvfvObtPjii6e55porrbXWWunJJ5+sdJIAAACg+oPu6667Lo0YMSKNHj06Pfvss2nllVdOW265Zfr4448rnTQAAACo7qD7rLPOSvvvv3/aZ5990uDBg9OFF16YevTokS677LJKJw0AAACqN+ieOnVqeuaZZ9Lmm2/+/xLUsWN+/Pjjj1cyaQAAAPCddU4V9Omnn6Zp06alBRdcsM76ePzqq6822H7KlCl5KZs4cWL+O2nSpBZL0/Qpk1tkP5M6lFpkP+k7HJtjaePH0oLf+++iVX023/GctKpjaS3fM8fSyI5a7rdX/h2XSi2UtipTPu7Wcj0DgCLy8YoG3c01duzYdNJJJzVYP2DAgNTa9G6pHZ3WYnuabY6llR7LOalN6d1GPpc29z1rqR05lpn64osvUu/elT9Hc1ocd2vNxwGgpfLxigbdffv2TZ06dUofffRRnfXxeKGFFmqw/fHHH58HXSubPn16+uyzz1KfPn1Shw4dUmsq8YgbiPfffz/16tUrVTPH0jq1pWNpa8fjWFqn1nosUTIeGXX//v1TexTHHZ9Jz549W1U+3tq/N+35WNrKcbSlY2krxxEcS+szqZUfR1Pz8YoG3V27dk1DhgxJ999/fxo6dGhNIB2PDznkkAbbd+vWLS+1zTvvvKm1ii9Ga/xyzA7H0jq1pWNpa8fjWFqn1ngs7bGGu/Y4Losuumhq7Vrj96a9H0tbOY62dCxt5TiCY2l9erXi42hKPl7x5uVRcz1s2LC0+uqrpzXXXDOdc8456auvvsqjmQMAAEA1q3jQvdtuu6VPPvkk/exnP0sTJkxIq6yySrrrrrsaDK4GAAAA1abiQXeIpuSNNSevVtEEfvTo0Q2awlcjx9I6taVjaWvH41hap7Z0LMw5bel701aOpa0cR1s6lrZyHMGxtD7d2shxdCi113lKAAAAoGAdi34DAAAAaK8E3QAAAFAQQTcAAAAURNDdgh5++OG0/fbb58nRO3TokG655ZZUrcaOHZvWWGON1LNnz9SvX788j/prr72WqtEFF1yQVlpppZr5/dZZZ5105513prbgtNNOy9+1I444IlWbMWPG5LTXXpZddtlUrf71r3+lH/3oR6lPnz6pe/fuacUVV0xPP/10qkaLL754g88mloMPPjhVm2nTpqVRo0alJZZYIn8ugwYNSqecckoynAntJU9vK/l5W83L5eOtR1vIx+XfrVerGL28rYj5xVdeeeW07777pp133jlVs4ceeij/QCOj/vbbb9NPf/rTtMUWW6RXXnklzT333KmaLLroojlTW3rppfMPddy4cWnHHXdMzz33XFp++eVTtXrqqafSRRddlG9CqlWc//vuu6/mcefO1XlJ+vzzz9N6662XNtlkk3wTuMACC6Q33ngjzTfffKlav1uR2ZW99NJL6fvf/376wQ9+kKrN6aefnm/W43cf37e4gdpnn31S796902GHHVbp5NGKtZU8va3k520xL5ePtx5tJR+Xf7diMXo5LS9O7c0331xqKz7++ON8TA899FCpLZhvvvlKl156aalaffHFF6Wll166dO+995Y22mij0uGHH16qNqNHjy6tvPLKpbbguOOOK62//vqltiq+X4MGDSpNnz69VG223Xbb0r777ltn3c4771zac889K5Ymqk9bytPbUn5ezXm5fLx1aav5uPy79dC8nCaZOHFi/jv//POnahalf9dee22uwYimadUqai223XbbtPnmm6dqFqXI0XRzySWXTHvuuWd67733UjW67bbb0uqrr55LkqP55qqrrpouueSS1BZMnTo1XX311bm2L5qoVZt111033X///en111/Pj8ePH58effTRtPXWW1c6aVARbSE/bwt5uXy8dWmL+bj8u3WpzjYgzFHTp0/PfY2i2c0KK6yQqtGLL76YM+b//ve/aZ555kk333xzGjx4cKpGcaPx7LPP5iZE1WyttdZKV1xxRVpmmWXShx9+mE466aS0wQYb5KZQ0fewmrz99tu5CdSIESNy0834bKLpU9euXdOwYcNSNYt+rP/5z3/S8OHDUzUaOXJkmjRpUu5n2KlTp3yz/otf/CLfHEJ7U+35eVvJy+XjrU9bzMfl361Mpava26q21BTtwAMPLC222GKl999/v1StpkyZUnrjjTdKTz/9dGnkyJGlvn37ll5++eVStXnvvfdK/fr1K40fP75mXbU2S6vv888/L/Xq1asqmwp26dKltM4669RZd+ihh5bWXnvtUrXbYostStttt12pWl1zzTWlRRddNP994YUXSldeeWVp/vnnL11xxRWVThpVpK3k6dWen7eFvFw+3jq1xXxc/t26CLoL0lYy6IMPPjh/4d9+++1SW7LZZpuVDjjggFK1ie9UfLc6depUs8TjDh065P9/++23pWq2+uqr5xupajNw4MDSfvvtV2fdb3/721L//v1L1ezdd98tdezYsXTLLbeUqlVcv37961/XWXfKKaeUlllmmYqlierTFvL0tpifV2NeLh9vndpaPi7/bn00L6dRcY9x6KGH5qZbDz74YB6uv601sZsyZUqqNptttlluXldbjOQYTW+OO+643PymWn355ZfprbfeSnvttVeqNtFUs/4UPNEHabHFFkvV7PLLL89926LfYbWaPHly6tix7vAl8TuJawC0B205P6/GvFw+3jq1tXxc/t36CLpb+GLz5ptv1jx+55130vPPP58HKxk4cGCqtgE+/vCHP6Rbb70198uZMGFCXh/D9MdcedXk+OOPz4MuxGfwxRdf5OOKG4+77747VZv4LOr3w4spX2JOyWrrn3f00UfnOXAjQ/vggw/S6NGj88X0hz/8Yao2Rx55ZB7w49RTT0277rprevLJJ9PFF1+cl2oVmVpk2tGXrVqngAnxHYs+YPH7jylHYnqhs846Kw8sA+0hT28r+Xlbycvl461TW8rH5d+tVKWr2tuSBx54IDcRqr8MGzasVG0aO45YLr/88lK1iekGog9b165dSwsssEBujnbPPfeU2opq7Qu22267lRZeeOH8uSyyyCL58ZtvvlmqVn/6059KK6ywQqlbt26lZZddtnTxxReXqtndd9+df/OvvfZaqZpNmjQp/z6i6eBcc81VWnLJJUsnnHBC7hsK7SFPbyv5eVvOy+XjrUNbycfl361Th/in0oE/AAAAtEXm6QYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AYAAICCCLqhjXr//ffTvvvum/r375+6du2aFltssXT44Yenf//735VOGgAwC/JxaDsE3dAGvf3222n11VdPb7zxRrrmmmvSm2++mS688MJ0//33p3XWWSd99tlnhb331KlTC9s3ALQH8nFoWwTd0AYdfPDBuVT8nnvuSRtttFEaOHBg2nrrrdN9992X/vWvf6UTTjghb9ehQ4d0yy231HntvPPOm6644oo6Je277rprXj///POnHXfcMb377rs1zw8fPjwNHTo0/eIXv8il8csss0w6+eST0worrNAgXausskoaNWpUoccOANVOPg5ti6Ab2pgo/b777rvTQQcdlLp3717nuYUWWijtueee6brrrkulUmmW+/rmm2/SlltumXr27JkeeeSR9Nhjj6V55pknbbXVVnVKwqPk/bXXXkv33ntvuv3223NzuL///e/pqaeeqtnmueeeSy+88ELaZ599WviIAaDtkI9D29O50gkAWlY0RYuMeLnllmv0+Vj/+eefp08++WSW+4pMffr06enSSy/Npenh8ssvz6XlDz74YNpiiy3yurnnnjtvE6XyZZHJx7ZrrLFGzeuitH7JJZdsoSMFgLZHPg5tj5puaKNmVQJeO2OdkfHjx+d+ZFFCHiXjsUTTtP/+97/prbfeqtluxRVXbLC//fffP/dDi22jNP0Pf/hDLjkHAGZNPg5th5puaGOWWmqpXJodzcJ22mmnBs/H+gUWWCCXcsd29TP1aIpW9uWXX6YhQ4ak3//+9w32E/soixLy+rbffvvUrVu3dPPNN+eMPPb7P//zPy1whADQdsnHoe0RdEMb06dPn/T9738//fa3v01HHnlknf5gEyZMyBlvDNBSznA//PDDOk3aJk+eXPN4tdVWy03T+vXrl3r16tWsdHTu3DkNGzYsN0eLzHr33Xdv0DcNAKhLPg5tj+bl0Ab9+te/TlOmTMn9sR5++OE8culdd92VM/Hvfe976Wc/+1nebtNNN83bxuAoTz/9dDrwwANTly5davYTg7X07ds3j3QaA7C88847uQ/YYYcdlv75z3/OMh0//vGP01/+8pf83pqkAUDTyMehbRF0Qxu09NJL5xFHY7CTmCZkscUWy1ONREZdHrk0/OpXv0oDBgxIG2ywQdpjjz3S0UcfnXr06FGzn/h/ZPYxVcnOO++cB2/Zb7/9cv+uppSYRzrWXXfdtOyyy6a11lqr0GMGgLZCPg5tS4dSU+YbAKre6NGj01lnnZWnA1l77bXnyHvG5SUy7Jj2ZMSIEXPkPQGgLZKPQ/USdEM7Ev2yJk6cmJuVdexYbEOXmMrk2muvTccff3xuFjfffPMV+n4A0NbJx6E6CbqBQsSIqtGP7Nxzz81N3gCA6iEfh5Yj6AYAAICCGEgNAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAAUjH+P8sbCa8div6lAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Average Base Model Score: 8.12\n",
"Average Fine-tuned Model Score: 7.25\n",
"Average Improvement: -0.88 (-10.8%)\n"
]
}
],
"source": [
"# Visualize comparison results\n",
"plt.figure(figsize=(10, 6))\n",
"\n",
"# Calculate improvement\n",
"comparison_results['improvement'] = comparison_results['fine_tuned_score'] - comparison_results['base_score']\n",
"\n",
"# Bar chart comparing scores\n",
"plt.subplot(1, 2, 1)\n",
"x = np.arange(len(comparison_results))\n",
"width = 0.35\n",
"\n",
"plt.bar(x - width/2, comparison_results['base_score'], width, label='Base Model')\n",
"plt.bar(x + width/2, comparison_results['fine_tuned_score'], width, label='Fine-tuned Model')\n",
"\n",
"plt.xlabel('Query')\n",
"plt.ylabel('Score (0-10)')\n",
"plt.title('Base vs Fine-tuned Model Performance')\n",
"plt.xticks(x, range(1, len(comparison_results) + 1))\n",
"plt.legend()\n",
"\n",
"# Improvement chart\n",
"plt.subplot(1, 2, 2)\n",
"colors = ['green' if x > 0 else 'red' for x in comparison_results['improvement']]\n",
"plt.bar(range(1, len(comparison_results) + 1), comparison_results['improvement'], color=colors)\n",
"plt.axhline(y=0, color='k', linestyle='-', alpha=0.3)\n",
"plt.xlabel('Query')\n",
"plt.ylabel('Score Improvement')\n",
"plt.title('Fine-tuned Model Improvement')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"# Show overall improvement\n",
"avg_base_score = comparison_results['base_score'].mean()\n",
"avg_fine_tuned_score = comparison_results['fine_tuned_score'].mean()\n",
"avg_improvement = avg_fine_tuned_score - avg_base_score\n",
"\n",
"print(f\"Average Base Model Score: {avg_base_score:.2f}\")\n",
"print(f\"Average Fine-tuned Model Score: {avg_fine_tuned_score:.2f}\")\n",
"print(f\"Average Improvement: {avg_improvement:.2f} ({avg_improvement/avg_base_score*100:.1f}%)\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"We were able to train a fine-tuned model on our queries and designs, but the results were disappointing. We don't want to launch an embedding model that hurts our performance so we'll stick with the existing rag agent. But with more queries, more data, and testing more models, there may be a way to find improvements."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|