File size: 68,993 Bytes
ab1d8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fine-tuning Embeddings for Design Data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's see if we can improve the quality of our returned results using a fine-tuned embedding model trained on our designs!\n",
    "\n",
    "We'll use SentenceTransformers to fine-tune our embedding model, as it provides a straightforward approach for adapting models to specific domains."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install required packages if needed\n",
    "# !pip install sentence-transformers datasets torch matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "import os\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from pathlib import Path\n",
    "from sentence_transformers import SentenceTransformer, InputExample, losses\n",
    "from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator\n",
    "from torch.utils.data import DataLoader"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Load Design Data\n",
    "\n",
    "First, we'll load the design data from our existing dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/data/designs\n",
      "Loaded 141 designs\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>text</th>\n",
       "      <th>categories</th>\n",
       "      <th>visual_characteristics</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>135</td>\n",
       "      <td>Design 135:\\n            Description: This des...</td>\n",
       "      <td>[Traditional, Elegant, Text-Heavy, Classic]</td>\n",
       "      <td>[Muted Color Palette, Vertical Layout, Serif T...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>132</td>\n",
       "      <td>Design 132:\\n            Description: This des...</td>\n",
       "      <td>[minimalist, nature-inspired, modern, zen-them...</td>\n",
       "      <td>[white background, green accents, illustrative...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>104</td>\n",
       "      <td>Design 104:\\n            Description: The CSS ...</td>\n",
       "      <td>[minimalism, elegance, typography, web design ...</td>\n",
       "      <td>[subtle color palette, classic serif fonts, cl...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>103</td>\n",
       "      <td>Design 103:\\n            Description: This des...</td>\n",
       "      <td>[vintage, classical, dramatic, ornate, elegant]</td>\n",
       "      <td>[dark color palette, gold accents, traditional...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>168</td>\n",
       "      <td>Design 168:\\n            Description: This des...</td>\n",
       "      <td>[Humorous, Educational, Whimsical, Nature-them...</td>\n",
       "      <td>[Vibrant color palette, Whimsical illustration...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    id                                               text  \\\n",
       "0  135  Design 135:\\n            Description: This des...   \n",
       "1  132  Design 132:\\n            Description: This des...   \n",
       "2  104  Design 104:\\n            Description: The CSS ...   \n",
       "3  103  Design 103:\\n            Description: This des...   \n",
       "4  168  Design 168:\\n            Description: This des...   \n",
       "\n",
       "                                          categories  \\\n",
       "0        [Traditional, Elegant, Text-Heavy, Classic]   \n",
       "1  [minimalist, nature-inspired, modern, zen-them...   \n",
       "2  [minimalism, elegance, typography, web design ...   \n",
       "3    [vintage, classical, dramatic, ornate, elegant]   \n",
       "4  [Humorous, Educational, Whimsical, Nature-them...   \n",
       "\n",
       "                              visual_characteristics  \n",
       "0  [Muted Color Palette, Vertical Layout, Serif T...  \n",
       "1  [white background, green accents, illustrative...  \n",
       "2  [subtle color palette, classic serif fonts, cl...  \n",
       "3  [dark color palette, gold accents, traditional...  \n",
       "4  [Vibrant color palette, Whimsical illustration...  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def load_design_data():\n",
    "    \"\"\"Load design data from the metadata files\"\"\"\n",
    "    designs_dir = Path.cwd().parent / \"src\" / \"data\" / \"designs\"\n",
    "    print(designs_dir)\n",
    "    designs = []\n",
    "    \n",
    "    # Load all metadata files\n",
    "    for design_dir in designs_dir.glob(\"**/metadata.json\"):\n",
    "        try:\n",
    "            with open(design_dir, \"r\") as f:\n",
    "                metadata = json.load(f)\n",
    "            \n",
    "            # Create a text representation of the design\n",
    "            text = f\"\"\"Design {metadata.get('id', 'unknown')}:\n",
    "            Description: {metadata.get('description', 'No description available')}\n",
    "            Categories: {', '.join(metadata.get('categories', []))}\n",
    "            Visual Characteristics: {', '.join(metadata.get('visual_characteristics', []))}\n",
    "            \"\"\"\n",
    "            \n",
    "            designs.append({\n",
    "                'id': metadata.get('id', 'unknown'),\n",
    "                'text': text.strip(),\n",
    "                'categories': metadata.get('categories', []),\n",
    "                'visual_characteristics': metadata.get('visual_characteristics', [])\n",
    "            })\n",
    "        except Exception as e:\n",
    "            print(f\"Error processing design {design_dir}: {e}\")\n",
    "            continue\n",
    "    \n",
    "    print(f\"Loaded {len(designs)} designs\")\n",
    "    return designs\n",
    "\n",
    "designs = load_design_data()\n",
    "designs_df = pd.DataFrame(designs)\n",
    "designs_df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Create Training Pairs\n",
    "\n",
    "For fine-tuning, we need to create positive pairs (similar designs) and negative pairs (dissimilar designs). We'll use categories and visual characteristics to determine similarity."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Creating training pairs...\n",
      "Created 95 training examples and 27 evaluation examples\n"
     ]
    }
   ],
   "source": [
    "from sentence_transformers import InputExample\n",
    "def create_training_pairs(designs_df, num_pairs=5000):\n",
    "    \"\"\"Create training pairs for fine-tuning\"\"\"\n",
    "    training_pairs = []\n",
    "    design_ids = designs_df['id'].tolist()\n",
    "    \n",
    "    # Calculate similarity between designs based on categories and characteristics\n",
    "    def calculate_similarity(design1, design2):\n",
    "        # Get categories and characteristics for both designs\n",
    "        cats1 = set(design1['categories'])\n",
    "        cats2 = set(design2['categories'])\n",
    "        chars1 = set(design1['visual_characteristics'])\n",
    "        chars2 = set(design2['visual_characteristics'])\n",
    "        \n",
    "        # Calculate Jaccard similarity for categories and characteristics\n",
    "        cat_sim = len(cats1.intersection(cats2)) / max(1, len(cats1.union(cats2)))\n",
    "        char_sim = len(chars1.intersection(chars2)) / max(1, len(chars1.union(chars2)))\n",
    "        \n",
    "        # Weighted similarity\n",
    "        return 0.5 * cat_sim + 0.5 * char_sim\n",
    "    \n",
    "    # Create similarity matrix\n",
    "    import random\n",
    "    train_examples = []\n",
    "    eval_examples = []\n",
    "    \n",
    "    # Create positive pairs (similar designs)\n",
    "    for i in range(len(designs_df)):\n",
    "        design1 = designs_df.iloc[i].to_dict()\n",
    "        similarities = []\n",
    "        \n",
    "        for j in range(len(designs_df)):\n",
    "            if i != j:\n",
    "                design2 = designs_df.iloc[j].to_dict()\n",
    "                sim = calculate_similarity(design1, design2)\n",
    "                similarities.append((j, sim))\n",
    "        \n",
    "        # Sort by similarity\n",
    "        similarities.sort(key=lambda x: x[1], reverse=True)\n",
    "        \n",
    "        # Add top similar designs as positive pairs\n",
    "        for j, sim in similarities[:3]:  # Top 3 most similar\n",
    "            if sim > 0.2:  # Only if they're somewhat similar\n",
    "                design2 = designs_df.iloc[j].to_dict()\n",
    "                # Create InputExample with texts and similarity score\n",
    "                example = InputExample(texts=[design1['text'], design2['text']], label=float(sim))\n",
    "                \n",
    "                # 80% for training, 20% for evaluation\n",
    "                if random.random() < 0.8:\n",
    "                    train_examples.append(example)\n",
    "                else:\n",
    "                    eval_examples.append(example)\n",
    "    \n",
    "    print(f\"Created {len(train_examples)} training examples and {len(eval_examples)} evaluation examples\")\n",
    "    return train_examples, eval_examples\n",
    "\n",
    "print(\"Creating training pairs...\")\n",
    "train_examples, eval_examples = create_training_pairs(designs_df)            "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Fine-tune the Model\n",
    "\n",
    "The model I've selected here is the distilbert-base-nli-stsb-mean-tokens model, chosen as a comparison because its BERT training is effective at semantic similarity. Performance isn't too important here, since we have one design per query and we want to return the best match."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting model fine-tuning...\n",
      "Loading base model: sentence-transformers/distilbert-base-nli-stsb-mean-tokens\n",
      "\n",
      "Training configuration:\n",
      "- Training examples: 95\n",
      "- Evaluation examples: 27\n",
      "- Batch size: 16\n",
      "- Warmup steps: 0\n",
      "- Using GPU: False\n",
      "- Model will be saved to: /Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/fine_tuned_design_embeddings_20250225_161918\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e4315da477764680aaacae97230e6409",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Computing widget examples:   0%|          | 0/1 [00:00<?, ?example/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='6' max='6' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [6/6 00:36, Epoch 1/1]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Step</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Pearson Cosine</th>\n",
       "      <th>Spearman Cosine</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>6</td>\n",
       "      <td>No log</td>\n",
       "      <td>No log</td>\n",
       "      <td>-0.139605</td>\n",
       "      <td>-0.068639</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Training complete!\n",
      "Model saved to /Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/fine_tuned_design_embeddings_20250225_161918\n"
     ]
    }
   ],
   "source": [
    "def fine_tune_model_simple(train_examples, eval_examples, base_model=\"sentence-transformers/distilbert-base-nli-stsb-mean-tokens\"):\n",
    "    \"\"\"Fine-tune a SentenceTransformer model\"\"\"\n",
    "    import os\n",
    "    import torch\n",
    "    from datetime import datetime\n",
    "    from sentence_transformers import SentenceTransformer, losses\n",
    "    from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator\n",
    "    from torch.utils.data import DataLoader\n",
    "    \n",
    "    # Load the base model\n",
    "    print(f\"Loading base model: {base_model}\")\n",
    "    model = SentenceTransformer(base_model)\n",
    "    \n",
    "    # Create training dataloader\n",
    "    train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)\n",
    "    \n",
    "    # Use CosineSimilarityLoss for fine-tuning\n",
    "    train_loss = losses.CosineSimilarityLoss(model)\n",
    "    \n",
    "    # Create evaluator\n",
    "    evaluator = EmbeddingSimilarityEvaluator.from_input_examples(eval_examples)\n",
    "    \n",
    "    # Create timestamped model save path\n",
    "    timestamp = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n",
    "    model_save_path = os.path.join(os.getcwd(), \"fine_tuned_design_embeddings_\" + timestamp)\n",
    "    \n",
    "    # Set up warm-up steps\n",
    "    warmup_steps = int(len(train_dataloader) * 0.1)\n",
    "\n",
    "    print(f\"\\nTraining configuration:\")\n",
    "    print(f\"- Training examples: {len(train_examples)}\")\n",
    "    print(f\"- Evaluation examples: {len(eval_examples)}\")\n",
    "    print(f\"- Batch size: 16\")\n",
    "    print(f\"- Warmup steps: {warmup_steps}\")\n",
    "    print(f\"- Using GPU: {torch.cuda.is_available()}\")\n",
    "    print(f\"- Model will be saved to: {model_save_path}\")\n",
    "    \n",
    "    # Train the model\n",
    "    model.fit(\n",
    "        train_objectives=[(train_dataloader, train_loss)],\n",
    "        evaluator=evaluator,\n",
    "        epochs=1,  # Start with just 1 epoch to test\n",
    "        warmup_steps=warmup_steps,\n",
    "        output_path=model_save_path,\n",
    "        show_progress_bar=True\n",
    "    )\n",
    "    \n",
    "    print(f\"\\nTraining complete!\")\n",
    "    print(f\"Model saved to {model_save_path}\")\n",
    "    \n",
    "    return model, model_save_path\n",
    "\n",
    "print(\"Starting model fine-tuning...\")\n",
    "fine_tuned_model, model_path = fine_tune_model_simple(train_examples, eval_examples)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Evaluate Fine-tuned Model vs Base Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll need nest_asyncio to run the async evaluation inside a Jupyter notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "import nest_asyncio\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Now define a synchronous wrapper for our comparison function\n",
    "def compare_models_sync(base_model_name, fine_tuned_model_path, test_queries):\n",
    "    \"\"\"Synchronous wrapper for compare_models\"\"\"\n",
    "    import asyncio\n",
    "    from langchain_openai import ChatOpenAI\n",
    "    import json\n",
    "    \n",
    "    # Load models\n",
    "    print(f\"Loading base model: {base_model_name}\")\n",
    "    base_model = SentenceTransformer(base_model_name)\n",
    "    \n",
    "    print(f\"Loading fine-tuned model from: {fine_tuned_model_path}\")\n",
    "    fine_tuned_model = SentenceTransformer(fine_tuned_model_path)\n",
    "    \n",
    "    # Initialize evaluator\n",
    "    llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
    "    \n",
    "    # Create a retrieval function using each model\n",
    "    def retrieve_with_model(model, query, k=1):\n",
    "        # Get embeddings for designs\n",
    "        design_texts = designs_df['text'].tolist()\n",
    "        design_embeddings = model.encode(design_texts, convert_to_tensor=True)\n",
    "        \n",
    "        # Get query embedding\n",
    "        query_embedding = model.encode(query, convert_to_tensor=True)\n",
    "        \n",
    "        # Calculate cosine similarities\n",
    "        cos_scores = torch.nn.functional.cosine_similarity(query_embedding.unsqueeze(0), design_embeddings)\n",
    "        \n",
    "        # Get top k designs\n",
    "        top_k_indices = torch.topk(cos_scores, k=k).indices.tolist()\n",
    "        \n",
    "        # Return top k designs\n",
    "        return [designs_df.iloc[i] for i in top_k_indices]\n",
    "    \n",
    "    # Evaluate a design match\n",
    "    async def evaluate_match(query, design):\n",
    "        prompt = f\"\"\"You are evaluating a design recommendation system.\n",
    "        \n",
    "        USER REQUIREMENTS:\n",
    "        {query}\n",
    "        \n",
    "        RECOMMENDED DESIGN:\n",
    "        {design['text']}\n",
    "        \n",
    "        Score how well the recommended design matches the user's requirements on a scale of 0-10.\n",
    "        Provide your score and brief explanation in JSON format exactly like this:\n",
    "        {{\n",
    "            \"score\": 7,\n",
    "            \"reason\": \"The design aligns with the requirements because...\"\n",
    "        }}\n",
    "        \n",
    "        Return only valid JSON, nothing else.\n",
    "        \"\"\"\n",
    "        \n",
    "        try:\n",
    "            response = await llm.ainvoke(prompt)\n",
    "            result = json.loads(response.content)\n",
    "            return result\n",
    "        except Exception as e:\n",
    "            print(f\"Error evaluating match: {e}\")\n",
    "            return {\"score\": 0, \"reason\": f\"Error parsing evaluation: {e}\"}\n",
    "    \n",
    "    # Test with both models\n",
    "    results = []\n",
    "    \n",
    "    # Define the evaluation function\n",
    "    async def evaluate_all_queries():\n",
    "        for i, query in enumerate(test_queries):\n",
    "            print(f\"Evaluating query {i+1}/{len(test_queries)}: {query[:50]}...\")\n",
    "            \n",
    "            # Get top result from each model\n",
    "            base_result = retrieve_with_model(base_model, query)[0]\n",
    "            fine_tuned_result = retrieve_with_model(fine_tuned_model, query)[0]\n",
    "            \n",
    "            # Evaluate matches\n",
    "            base_eval = await evaluate_match(query, base_result)\n",
    "            fine_tuned_eval = await evaluate_match(query, fine_tuned_result)\n",
    "            \n",
    "            # Store results\n",
    "            results.append({\n",
    "                \"query\": query,\n",
    "                \"base_model_id\": base_result['id'],\n",
    "                \"fine_tuned_model_id\": fine_tuned_result['id'],\n",
    "                \"base_score\": base_eval.get(\"score\", 0),\n",
    "                \"base_reason\": base_eval.get(\"reason\", \"Error\"),\n",
    "                \"fine_tuned_score\": fine_tuned_eval.get(\"score\", 0),\n",
    "                \"fine_tuned_reason\": fine_tuned_eval.get(\"reason\", \"Error\"),\n",
    "                \"models_differ\": base_result['id'] != fine_tuned_result['id']\n",
    "            })\n",
    "            \n",
    "            print(f\"  Base model: Design {base_result['id']} - Score: {base_eval.get('score', 0)}\")\n",
    "            print(f\"  Fine-tuned: Design {fine_tuned_result['id']} - Score: {fine_tuned_eval.get('score', 0)}\")\n",
    "    \n",
    "    # Run the async evaluation using the event loop\n",
    "    loop = asyncio.get_event_loop()\n",
    "    loop.run_until_complete(evaluate_all_queries())\n",
    "    \n",
    "    return pd.DataFrame(results)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loading base model: sentence-transformers/distilbert-base-nli-stsb-mean-tokens\n",
      "Loading fine-tuned model from: /Users/owner/Desktop/Projects/ai-maker-space/code/ImagineUI/src/fine_tuned_design_embeddings_20250225_161918\n",
      "Evaluating query 1/8: I need a minimalist design with lots of whitespace...\n",
      "  Base model: Design 220 - Score: 8\n",
      "  Fine-tuned: Design 144 - Score: 9\n",
      "Evaluating query 2/8: Looking for a playful, colorful design with rounde...\n",
      "  Base model: Design 129 - Score: 8\n",
      "  Fine-tuned: Design 129 - Score: 8\n",
      "Evaluating query 3/8: Need a professional business design with a dark th...\n",
      "  Base model: Design 204 - Score: 8\n",
      "  Fine-tuned: Design 204 - Score: 8\n",
      "Evaluating query 4/8: Want a nature-inspired design with organic shapes...\n",
      "  Base model: Design 190 - Score: 8\n",
      "  Fine-tuned: Design 215 - Score: 0\n",
      "Evaluating query 5/8: Looking for a tech-focused design with a futuristi...\n",
      "  Base model: Design 012 - Score: 9\n",
      "  Fine-tuned: Design 012 - Score: 9\n",
      "Evaluating query 6/8: I want the craziest design you can find...\n",
      "  Base model: Design 008 - Score: 8\n",
      "  Fine-tuned: Design 008 - Score: 8\n",
      "Evaluating query 7/8: I'd like an eye-catching design for a small busine...\n",
      "  Base model: Design 006 - Score: 8\n",
      "  Fine-tuned: Design 006 - Score: 8\n",
      "Evaluating query 8/8: I want something clinical and informative...\n",
      "  Base model: Design 130 - Score: 8\n",
      "  Fine-tuned: Design 004 - Score: 8\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>query</th>\n",
       "      <th>base_model_id</th>\n",
       "      <th>fine_tuned_model_id</th>\n",
       "      <th>base_score</th>\n",
       "      <th>base_reason</th>\n",
       "      <th>fine_tuned_score</th>\n",
       "      <th>fine_tuned_reason</th>\n",
       "      <th>models_differ</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>I need a minimalist design with lots of whites...</td>\n",
       "      <td>220</td>\n",
       "      <td>144</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>9</td>\n",
       "      <td>The recommended design matches the user's requ...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Looking for a playful, colorful design with ro...</td>\n",
       "      <td>129</td>\n",
       "      <td>129</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Need a professional business design with a dar...</td>\n",
       "      <td>204</td>\n",
       "      <td>204</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Want a nature-inspired design with organic shapes</td>\n",
       "      <td>190</td>\n",
       "      <td>215</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>0</td>\n",
       "      <td>The recommended design does not match the user...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Looking for a tech-focused design with a futur...</td>\n",
       "      <td>012</td>\n",
       "      <td>012</td>\n",
       "      <td>9</td>\n",
       "      <td>The recommended design aligns very well with t...</td>\n",
       "      <td>9</td>\n",
       "      <td>The recommended design aligns very well with t...</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>I want the craziest design you can find</td>\n",
       "      <td>008</td>\n",
       "      <td>008</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>8</td>\n",
       "      <td>The recommended design matches the user's requ...</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>I'd like an eye-catching design for a small bu...</td>\n",
       "      <td>006</td>\n",
       "      <td>006</td>\n",
       "      <td>8</td>\n",
       "      <td>The recommended design matches the user's requ...</td>\n",
       "      <td>8</td>\n",
       "      <td>The recommended design matches the user's requ...</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>I want something clinical and informative</td>\n",
       "      <td>130</td>\n",
       "      <td>004</td>\n",
       "      <td>8</td>\n",
       "      <td>The recommended design matches the user's requ...</td>\n",
       "      <td>8</td>\n",
       "      <td>The design aligns with the user's requirements...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                               query base_model_id  \\\n",
       "0  I need a minimalist design with lots of whites...           220   \n",
       "1  Looking for a playful, colorful design with ro...           129   \n",
       "2  Need a professional business design with a dar...           204   \n",
       "3  Want a nature-inspired design with organic shapes           190   \n",
       "4  Looking for a tech-focused design with a futur...           012   \n",
       "5            I want the craziest design you can find           008   \n",
       "6  I'd like an eye-catching design for a small bu...           006   \n",
       "7          I want something clinical and informative           130   \n",
       "\n",
       "  fine_tuned_model_id  base_score  \\\n",
       "0                 144           8   \n",
       "1                 129           8   \n",
       "2                 204           8   \n",
       "3                 215           8   \n",
       "4                 012           9   \n",
       "5                 008           8   \n",
       "6                 006           8   \n",
       "7                 004           8   \n",
       "\n",
       "                                         base_reason  fine_tuned_score  \\\n",
       "0  The design aligns with the user's requirements...                 9   \n",
       "1  The design aligns with the user's requirements...                 8   \n",
       "2  The design aligns with the user's requirements...                 8   \n",
       "3  The design aligns with the user's requirements...                 0   \n",
       "4  The recommended design aligns very well with t...                 9   \n",
       "5  The design aligns with the user's requirements...                 8   \n",
       "6  The recommended design matches the user's requ...                 8   \n",
       "7  The recommended design matches the user's requ...                 8   \n",
       "\n",
       "                                   fine_tuned_reason  models_differ  \n",
       "0  The recommended design matches the user's requ...           True  \n",
       "1  The design aligns with the user's requirements...          False  \n",
       "2  The design aligns with the user's requirements...          False  \n",
       "3  The recommended design does not match the user...           True  \n",
       "4  The recommended design aligns very well with t...          False  \n",
       "5  The recommended design matches the user's requ...          False  \n",
       "6  The recommended design matches the user's requ...          False  \n",
       "7  The design aligns with the user's requirements...           True  "
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "test_queries = [\n",
    "    \"I need a minimalist design with lots of whitespace\",\n",
    "    \"Looking for a playful, colorful design with rounded elements\",\n",
    "    \"Need a professional business design with a dark theme\",\n",
    "    \"Want a nature-inspired design with organic shapes\",\n",
    "    \"Looking for a tech-focused design with a futuristic feel\",\n",
    "    \"I want the craziest design you can find\",\n",
    "    \"I'd like an eye-catching design for a small business\",\n",
    "    \"I want something clinical and informative\"\n",
    "]\n",
    "\n",
    "comparison_results = compare_models_sync(\"sentence-transformers/distilbert-base-nli-stsb-mean-tokens\", model_path, test_queries)\n",
    "comparison_results"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Using this, we can verify the returned design of each model and query. A standout element is the \"0\" scored by the fine-tuned model for query #3. Checking the returned design, it's definitely not the nature-inspired design we were looking for. The model without fine-tuning hasn't missed a query that badly, so it's unclear why the training moved in the wrong direction."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Visualize Comparison Results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYHpJREFUeJzt3Qm4XdPdOP6VWUISJIKQGEIRs5jnqeYheItSEpR6zWKKkiZohVJjW2MRtKYaS801V81iqpnSEkNpgmhCcv7Pd73/c393SnJv3J1zz72fz/Ps3Jx99tln7X3O2Wt/19ihVCqVEgAAANDiOrb8LgEAAIAg6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6KZNGjNmTOrQoUOlk1EVhg8fnhZffPHUWl1xxRX5s3z33XfbxPfgyy+/TD/+8Y/TQgstlNN2xBFHVDpJQDsW19a4FsW1lpl78MEH87mKv61VpC/yvubyPYBiCbpbuXLAUXvp169f2mSTTdKdd96Z2quNN964wXkpL6+++mpF0/bKK6/kDG92gsRqOOdLL710o8/fe++9NZ/BH//4x1RtBQ+1v0O9evVKK6+8cvrVr36VpkyZ0qLvdeqpp+bf9f/+7/+mq666Ku21114tun+AWd1HlJeRI0dWOnn5mnjLLbektnrOH3300QbPl0qlNGDAgPz8dtttl6qx4KHa8vn2pi3+rqpd50ongKY5+eST0xJLLJEv1B999FG+oG+zzTbpT3/6U9VdsFvKoosumsaOHdtgff/+/dOJJ55YsZuJCLpPOumkHKS25hrk2THXXHOlN998Mz355JNpzTXXrPPc73//+/z8f//731SNunXrli699NL8///85z/pxhtvTEcffXR66qmn0rXXXtti7/OXv/wlrb322mn06NEttk+Apt5H1LbCCiukxRZbLH399depS5cuFQsO/ud//icNHTo0tTWRJ/7hD39I66+/fp31Dz30UPrnP/+Z8x0oQlv+XVUrQXeV2HrrrdPqq69e83i//fZLCy64YLrmmmvabdDdu3fv9KMf/WiGz3fu7Ovd0gYNGpS+/fbb/L2rHXRHoH3zzTenbbfdNger1Si+L7W/TwcddFBaa6210nXXXZfOOuusXJgzu6ZPn56mTp2ab8A+/vjjNHjw4BZKdcqfR+y/a9euLbZPoO3fR9QW1yZaXlSO3HDDDem8886rc08SgfiQIUPSp59+WtH0tRWTJ09OPXr0qHQyYKY0L69S8847b+revXuDwPLMM89M6667burTp09+Pi7qjTUBiqbAUfIa+5lnnnnSMsssk37605/W2Saa1UZt3FJLLZVLY6Mp1LHHHjvL5raHHHJI3mdcBOv74Q9/mPuyTps2LT9++umn05Zbbpn69u2b0xul8Pvuu2/6rhrryxuPI23R3CZK9+OYll9++XTXXXc1eP2//vWvnI4o2Chvd9lll83yfaMFwg9+8IP8/+gCUG5eVu7/NaO+VlEjHk2ca+8ntn3sscfSiBEj0gILLJDmnnvutNNOO6VPPvmkweujq8EGG2yQt+nZs2cOfl9++eUG25WPPW6w4m8Eys0Vn2EEohHolUWLi/i8d91110Zf89xzz+Ubvmi2Hd+NzTbbLP3tb39rsF2kedNNN83fhWjJ8POf/7zO+8zOMc+ujh075tYKodxVoKm/ifJ3LWr/47sT28b3LNa/88476Y477qj5bpT3HcF4uTAtPp9o3j5u3LhG+9zF7/ycc87JhSCx73KXhnju9ddfz4UHUSgV35tRo0blFjLvv/9+2nHHHfNnEL/BaDpfWxQK/OxnP8vXjHhtnNc4vw888MAM03DxxRfXpGGNNdbIrQLqi+4e8b2ItMTnGteaE044oUV+b8B311hf3siP4lodv82oKYv/x284Wv+U8++yuEbH9Sh+t3Htit/xT37yk/T555/P8r3jfb/66qt8rStfE8t54YzGG5lT+XvURMexx7UwuvUdeeSRze5uFPnlv//973zPVftaG/dle+yxR6OvifNx1FFH5fwl0hfXzLjexnW8tkhLpCk+l8gDd9hhh5zmxhR9jf2u+U+5yXrcW8S9aGwT5z2OKV5bW+TL8Rk/88wzacMNN8zBdvn+dVb56DfffJPmn3/+tM8++zQ4hkmTJuXXxHe8rLl5fhSwRKF65HXrrLNOevHFF/PzF110Ud5H7D/S31j3wyeeeCJttdVW+dzFMW200Ub5HrCx8xwtDuP3EffwsX0cT+177pn9rqgcVYFVYuLEiblENC5ecVE5//zz84BM9Wt6zz333HyR2nPPPfOFPZrFRhB4++2356AkRGASteMrrbRSbm4WF5L4Adf+cUcmGvuJvkgHHHBAWm655fLF4+yzz84X1Zn1E9ltt93Sb37zmxxYlAPQEBeECM7ih9+pU6d8HFtssUW+MEdT8Lh4xIXopptuatI5iYy/filxXNDi5mBG4nhi/1GLGZlUlD7vsssu6b333ssFFSGa70fz3/JFNNIXAV5cyOOiPLOBryIDOOyww/J+IxOI8xbKf5vr0EMPTfPNN1++6Me5iRubSFNkTGXRL3jYsGG58OL000/P5/mCCy7IhSoR7JZvWu655558rJEhRLP8uBGIC3UEt80RNwpx4Y9MMgLkcql9BNJxY1JffN8ieIvMNjKraMIYGVBkPNHELmqTw4QJE3JBRdTcxvchMtwI6iLzqq+px/xdvfXWW/lvfDea+5uIZuTXX399/ryiUGnhhRfO6Y6bpDjncVMV4vsVTTvjfMTvMLaPwqfIvOO3Ek3dDz/88Dr7vvzyy3PrgkhH/H7jJqL27y/Sdtppp+XfYBRcxPNxzuPzivMVhQFxYxGBcnxnQ3y3o3l93CTuv//+6Ysvvki/+93v8jmO7gSrrLJKnTTEZx7bxM11/FZ++ctfpp133jm9/fbbNc1UX3jhhfzZx+NIa3wucU7jOvCLX/ziO//egObfR9QW16aZ5bHx+49rdAR99913Xw6WoqAtxqQoi2tABOyRn0T+FwWLv/71r/O1OO4rZtZsPa6JMbBktJyKa0SI/c+Olszf45oceVq8No4pWjpFWuO63hxxzYvgK1qHRcFziPeLz2L33XfPaawt7vEin4nCzkhTXHfvvvvudMwxx+TAOfKbsjhvV199dc6To7Il0la+z6ttTl5jZzf/KYt8IdJ53HHH5XvEuOfZfPPN0/PPP1/nXiDuX+J8xjmM++AIspuSj8Z3MSov4nsSaardQizy8AimY5+huXn+I488km677bZ08MEH58dxnxX32nHf89vf/jZ/L6MgKvLKKACp/V2K/8fxRKF33O9FoX/k83HOYr/1u/NFQXYcX7zHs88+m/PuuP+K89vSvytaUIlW7fLLL4+izQZLt27dSldccUWD7SdPnlzn8dSpU0srrLBCadNNN61Zd/bZZ+d9fPLJJzN836uuuqrUsWPH0iOPPFJn/YUXXphf+9hjj83wtdOnTy8tssgipV122aXO+uuvvz6/9uGHH86Pb7755vz4qaeeKjXXRhtt1Oh5GTZsWH5+9OjR+XFt8bhr166lN998s2bd+PHj8/rzzz+/Zt1+++1XWnjhhUuffvppndfvvvvupd69ezc4x/XdcMMNeZ8PPPBAg+difaStvsUWW6wm7bU/98033zyfz7Ijjzyy1KlTp9J//vOf/PiLL74ozTvvvKX999+/zv4mTJiQ01p7/SqrrJKPq/zacM899+T3ifdvyjlffvnl8/9XX331fJ7C559/ns/ruHHj8jHH/uIclA0dOjQ//9Zbb9Ws++CDD0o9e/YsbbjhhjXrjjjiiPzaJ554ombdxx9/nI8j1r/zzjvNPubGvgeNiXM/99xz599ELPEdOfXUU0sdOnQorbTSSs3+TcTj2Pbll19u8F5xrrfddts6684555z8mquvvrrOb3edddYpzTPPPKVJkybldXEOYrtevXrlc1Nb+VgPOOCAmnXffvttadFFF83Hcdppp9Wsj8+se/fudb5zse2UKVPq7DO2W3DBBUv77rtvzbpyGvr06VP67LPPatbfeuutef2f/vSnmnXx+cbn/I9//KPOfmt/p7/r7w2YvfuI8rWx/JuO7cri2hDrTj755Dr7WnXVVUtDhgypeRzXw9ju97//fZ3t7rrrrkbXNyauvbWvRbXT0FjeNCfy9/I1Oe5byr766qvSUkstNcP8vbFzHvc3v/71r/N1sLzvH/zgB6VNNtmk0fzglltuya/7+c9/Xmd///M//5Ov4+Xje/755/N2Bx10UJ3t9thjjwb3GU095sa+B41pLJ//rvlPeZ9x71jO72rfN5577rkN7v8i752dfPTuu+9ukFeFbbbZprTkkkvWPG5unh/35eX7lHDRRRfl9QsttFCdYzr++OPr3NNEfrj00kuXttxyyzp5Y3wuSyyxROn73/9+g/NcO08OO+20U86Tm/K7onI0L68SUXMczZNiiZLNqBGMUqz6tcK1SwKjRC1KU6OmKUrCyqJGOdx6660zbLobpYNRqrfsssvmkvHyUq7ZrN/ktLYopYwa7j//+c+5Nr4samcXWWSRmgFFyumIWvho8tNcUYJcPiflJUoUZyZKTGuX9kVtf9TARu1ciGtn9Enefvvt8/9rH3uU+Mf5rH0uixYllLWb0cVnGbUP//jHP/LjOOYowY3aydppjZYEUTtR/pw+/PDDXFIctcPRFKns+9///mz1L46S9fjulZvJxftF6XF9kdaoYY8meksuuWTN+qj1jX1ECXKUtIf4vkRpfO0S3SiRj1YbtTX1mJsrmmLF+8USzcCipULUUJSb4Df3NxFNw5p6buPYozldHFNZlMhHDUv8hqJFQG1RexPpbExcF8rinEQfzvguR61GWfz2osli+Xtf3rZc6h/Xhc8++yy3OojXN/adjxqNaIVR+7sZyvuMbhAPP/xwLtEfOHBgndeWv9Ot7fcG7eU+orzMyoEHHljncfzOa1834roYeUrkJbV/v1FjF63OZvd6PDtaMn+Pa3LkUzEQVVk0+S3XGjZH1EpGLWzc60TroPg7o6bl8b5xLY5rf23RMirSXJ61JrYL9berX2s9p6+xs5v/lO299965lUJZnP/4HMrHWxYtvOo3EW9qPhp5drTwqN1iMO6X4/cQ+VpZc/P8aBlRu5VduRVf5Ne1j6m8vnz8cW/2xhtv5O9E1OCX3yfuSWKfkY/Wv1dv7HcZry3fT9E6aV5eJSIQqT0ASlxUVl111dyEJpqvlG+W42IezXniR1y7z0ntwC0uKtEUJS6O0Yw3ftTRLDQubtGkJcQF4O9///sMb+yj2c/MxHtEs6BoahMXkrjgxQWx3BS1HJTExShG+o7mOtEsKIKz2L4pI3pG8+PIZJuj/s1/iMCh3PcsAoUI6KJZcywzO/ZoDl1b3Hg01hT6u6if3nKQU05vfE6hnAnUFzccoRykNzbdV2R+zc10o/lVNA+LG4BoKhbfwdqZSlmcz2j6He9RX2RmkZFEf63oXxZpLGdG9dNXW1OPubmia0I0ew7x/YumW7Wb3jf3N1F/lOCZiWOPz6b8+ysrd0sof35N2Xf970x8L+PY6jcjjfWRSdcW/b+i+Wj0w65dENbY+83qu1m+oYi+dzPSnN8b0LL3EbMS143617va+WX5uhiBW2Ndi2r/fmObCDzL4p6ldreYltCS+Xtcc6PwtX7f8cbyslmJcxj3KtElJ/LDKIyuHczXFu8bTdnr56f184L4G/lF/SbD9dM3p6+x3yX/aeweJc5/fA71+0BHBU79wUObmo/GWEhx7xmfR9wnR34flQiR59UOupub5zd27CH6gTe2vv59XFSKzEj8fmoXcs8s/53deyCKJ+iuUnFRidru6MMdP9gIWqLfR/Q/iT4y0X8kSgejlC/6hcTFpSwCwyg5i1K66HMTA41EiV8EMVErGaWTEQytuOKKedTmxtS/iNQXNZZR4hd9WiOIjmAmMtzaF7TyPI8xoFY8H/2WolYsbvpj3cz6Zs+uOLbGlAcoKZcmRh+hGV0Ao/Q8xPmtLc7z7A5UUX9gmuamN/rvRAnvnBrBPY49Cknis4o+e3NyxPKijjnO9cwKcZr7m2jpApim7rux78ysvkchWtDE9zcKvqL/YNxEx+uiz1i5b3tz9zkrzfm9AXPWjH7j9X/Dca2IwtfGlAOW6E9be0CrKHQvDzA6I/UD3pbKLytxvYn7oBgrIwrro+9uuaVf0eb0Mc9u/tNc3zV/jYqD6NMdFQeR58W9atRox8Brs5vnz+g4m/q9POOMMxqMnVJW/364iHNK8QTdVSyafoZyE+4IfKJEMYLX2jXFEQw2FrRHDXcscUGJ+fxiROEIxMtNtMaPH5+fn1HG15QmVVEoEM1dIqiPIDyC8fpiXSwxgEYUDkRz4hgArnYzpTmlPApoZOqzqkWv3zQvCj7CzM5XlEZGqXNt0UQ7mn/PjnIpd9z0zCy9MQ9r7RLV2l577bXZvomIzyhuHmJalBmdz2iS19h7RG1qfA/LGVeksSnpa+oxt7SW+E3MSBx7DDoWmW/tUvo4R+XnixYFYNEFIEr8ax/f7M4nXu5O8NJLL7XI7w1ofeK6GAOsrbfeejMNhKLrV+2BX2vX2s3oetpYftlYy5+mas71Jq65ce2KIKZ2+mY3v4zuV9HSLyoUajdrbux943xGM/Tatd3184L4G/lFFIjWrt2un75qu8bWvweI8x8DozWlYKA5+WhUTkXlQXwW0eUxBjKrP6tGkXl+/fcJUUPdkp9RkWlm9ujTXaWiGUzUSkfzmnLTmSj5ih9Z7VLgaJJTf4TF6KtZX7l0rdwkPQLmGCnzkksuabBt1FhHX5NZiVrt2F+Ubkdtev3ppKIZTP1SufrpmNPiHEazoyjAaCxYqD1dV1wcay/lmu9o9h4au1mIi2u0MqgtmnzNqOR+VqJPVlyoo9CksX7x5fRG2uLcxmcRzZRqFxzEdFOzI5rHRUAWrSpmNEd0nM8YoT7GD6jdPCxGU40Clsjsyk2hInCPG5IYKbt2+uvXoDT1mFtaS/wmZiSOPWpAat+MRaFazFIQJdxRK1S0csl57d9kTGHy+OOPz9b+4mYvbmxiWpoYAbi28ns05/cGtD5xXYz865RTTmnwXFzDyvlgjG9RO7+MPt9lkWfOKL+M/CoCqbIooJ6dqS6be72Ja/IHH3xQZ8rVaBo+oybasxLX8ZhhI2b+iP7VMxLvG+czRn+vLbrgxf1deQT08t/6o59Ht77aqu0ae+WVV+YCh7I4//GZl4+3pfLRCMrjHiZaWUarudiudkvMovP82uK3EN/1mCGg9jhI3/UzmtHvispR010loglMubQu+pFEwBIlgtEnuxy0xFQRUWsd8/xFLWRsFwOnRH+Y2plWTBMWgV9sHyV/sV0ETtF/tTzI2V577ZWb28RgDVH7HaXYkRFEGmJ91KbPqm/Yaqutlt87Sg8jiK5/QYsAMN43SoDjghMX2ri4xfHMqOZ0ToipLuKYo39xNAeLm4UoqIh+z1EC3VihRW0R3EZGF1M3xA1DtDqIpvtRMxs1w3FOIxOMgWeiFDXO5cymbZmZOFeRkcfnFec7mkxFsBNBTnQdiM+tnHlHM+H4zOMzjmb8cRyRGUUNfWMX+lmJfkmNzTleX4wxUJ4XPqbMiObf0awrvhMxdUbtmpDI/OL7G00Ry1OGlUuvZ+eYW1JL/CZmJAbniXMSzbtj7tFoFRI3G9F0P26iGusv39KiX37UcsfvMb4nMe3PhRdemL//s/P9KN8Qxucen1McY/QNj8KX+Jxi3ImW+L0BlROBTNTgRv4Sv+koZI1ubXF/EgNRRWu3GfVfrh10xG897l+iP3NcJ+J6ENf2mDoqrkkxGFZ5asjvfe97sz34V1OvN/Fc5CMxsFdck8tTPkbLrdk1sz67ZRGQR9fBuG+Ka2U0d44Klii4jkHSyrWicZ8RY/vEPVTcZ8SUYffff3+uFZ7dY24Nop9/5BkxSFoUzkf+F/eRke6WzkfjnjTugaLyIJqR15/atcg8v7YoAIhxlqJgIe7H4tijz3oE/PG+cc9THm+mOWb0u6KCKjhyOrM51cdcc82Vp3+64IIL6kwvEH73u9/lqQdi6oJll102v77+9Br3339/accddyz1798/T7ERf3/4wx+WXn/99Tr7iqkWTj/99DxNVOxvvvnmy1OFnHTSSaWJEyc2Kf0nnHBCfu+YZqO+Z599Nr/vwIED8/779etX2m677UpPP/10s6avasyMphQ5+OCDZzldV/joo4/ytgMGDCh16dIlT/mw2WablS6++OJSU1xyySV56omY3qv29CLTpk0rHXfccaW+ffuWevTokaeIiClAZjRlWP3p1MrTatSfriQex75i+o/4fgwaNKg0fPjwBufyxhtvLC233HL5fA8ePLh00003zXBaluae8xlNJVL+rCN9MW1HHHdMl/LXv/61wetfeOGF/D5xDDF1yCmnnJK/07Wn12jOMTd3yrBZaepvYkbftRlNGVb+zu2zzz75uxG/yxVXXLHB1C3lKV3OOOOMBq8vH2v9qQBndGz1P8+4lsQ0aZG+OLaYGuj2229v8P2YWRoamxLvpZdeytOZxDRv8Tkts8wypVGjRrXo7w2YsRnlJ2UzmjKssevGjK6p8VuNa2FMBRXTY8X169hjj83TQ87Kq6++mqcXjNfWnvqzPK1lTHsa18S4dsR0UHMqf4+pDnfYYYecZ8V1+fDDD6+ZCq05U4bNTGP5QUyLGdODxr1ZpC/u6eJ6W/9+7+uvvy4ddthheaqo+Ky233770vvvv9/odbgpx9wSU4bNbv5T3uc111yTp9SK+8H4PsS5qT/l5MzuRZqSj5bF+Yzz0dgUbS2R588or5zRfdJzzz1X2nnnnfPnGe8V341dd90137PP6jyXv2+175Nm9ruiMjrEP5UM+gEAgPYpBtWLGv5oHTGrlhFQrfTpBgAAgIIIugEAAKAggm4AAAAoiD7dAAAAUBA13QAAAFAQQTcAAAAUpHOqYtOnT08ffPBBnvC+Q4cOlU4OADRL9PD64osvUv/+/VPHju2vHFw+DkB7yMerOuiOjHrAgAGVTgYAfCfvv/9+WnTRRVN7Ix8HoD3k41UddEfJePkge/XqVenkAECzTJo0KQed5fysvZGPA9Ae8vGqDrrLTdEio5ZZA1Ct2mvTavk4AO0hH29/HcgAAABgDhF0AwAAQEEE3QAAAFCQqu7TDVA2bdq09M0331Q6GVBHly5dUqdOnSqdDACgggTdQNXPjzhhwoT0n//8p9JJgUbNO++8aaGFFmq3g6UBQHsn6AaqWjng7tevX+rRo4fAhlZVIDR58uT08ccf58cLL7xwpZMEAFSAoBuo6ibl5YC7T58+lU4ONNC9e/f8NwLv+J5qag4A7Y+B1ICqVe7DHTXc0FqVv5/GHACA9knQDVQ9TcppzXw/AaB9E3QDAABAQQTdAFSk9veWW25p8vbDhw9PQ4cOLTRNAABFMJAa0CYtPvKOOfp+7562bbO2jyBy3LhxNY/nn3/+tMYaa6Rf/vKXaaWVVkqVcsUVV6R99tknLbvssunvf/97neduuOGGtOuuu6bFFlssvfvuuxVLIwBANVHTDVAhW221Vfrwww/zcv/996fOnTun7bbbrtLJSnPPPXcebfvxxx+vs/53v/tdGjhwYMXSBQBQjQTdABXSrVu3tNBCC+VllVVWSSNHjkzvv/9++uSTT2q2Oe6449L3vve9PAL2kksumUaNGlVnFOzx48enTTbZJPXs2TP16tUrDRkyJD399NM1zz/66KNpgw02yFNXDRgwIB122GHpq6++mmm6IvjfY4890mWXXVaz7p///Gd68MEH8/r6LrjggjRo0KDUtWvXtMwyy6SrrrqqzvNvvPFG2nDDDdNcc82VBg8enO69994G+4jjjlr0eeedN9f677jjjmrTAYA2QdAN0Ap8+eWX6eqrr05LLbVUnTnHI5iOJt+vvPJKOvfcc9Mll1ySzj777Jrn99xzz7Toooump556Kj3zzDM5cO/SpUt+7q233sq16bvsskt64YUX0nXXXZeD8EMOOWSW6dl3333T9ddfnyZPnpwfRxpiXwsuuGCd7W6++eZ0+OGHp6OOOiq99NJL6Sc/+Ulunv7AAw/k56dPn5523nnnHJA/8cQT6cILL8wFCbVFIcKWW26Zj/WRRx5Jjz32WJpnnnny+02dOvU7nlkAgMrSpxugQm6//fYcXIaofV544YXzuo4d/1956Iknnljz/8UXXzwdffTR6dprr03HHntsXvfee++lY445JvfBDksvvXTN9mPHjs1B+RFHHFHz3HnnnZc22mijXDsdNc8zsuqqq+aa9T/+8Y9pr732ykH3WWedld5+++0625155pm5f/pBBx2UH48YMSL97W9/y+ujBv6+++5Lr776arr77rtT//798zannnpq2nrrrWv2EYUBEZxfeumlNdNrXX755bnWO2rXt9hii+90ngEAKklNN0CFRFD6/PPP5+XJJ5/Mtb0RjP7jH/+oE5Cut956uQl6BOgRhEegXRZB7o9//OO0+eabp9NOOy3Xbtdueh7BcryuvMR7RID7zjvvNKm2O4Lfhx56KBcKbLPNNg22icHWIn21xePyIGzxN5q1lwPusM4669TZPtL55ptv5prucjqjifl///vfOscDAFCNBN0AFRywLJqTxxIjl0dNbwS30YQ8xEBmUVMdwW7UgD/33HPphBNOqNPkesyYMenll19O2267bfrLX/6S+0xHk+9yk/Vo7l0O7GOJADf6WEcf7FmJ945a63iPqO2Ovt5FiHRGX/Ta6Yzl9ddfb7QPOQBANdG8HKCViKbV0bT866+/zo//+te/5um5ItAuq10LXhYDrcVy5JFHph/+8Ie5dnqnnXZKq622Wu4LHkH97Ija5h122CH37Y6+2I1Zbrnlch/sYcOG1ayLxxH8l5+PQdJihPZoPh8ikK8t0hk1+v369cuDwQEAtCVqugEqZMqUKWnChAl5iWbYhx56aK713X777Wv6YEdT8ujDHc2soz92uRY7RHAeg6JFv+cIxiPYjQHVItANMWBZBO6xTdQcRw33rbfe2qSB1Mqiefqnn35a02e8vuhPHttEH/HYf/T7vummm3Lf8xDN3qNAIILyqGWPgdJqFyKUa9T79u2bRyyP56PpexxTjLQeo6YDAFQzNd0AFXLXXXfV1P5Gf+YIbG+44Ya08cYb53VRyxy11xEkR4AeTchjyrBo7h06deqU/v3vf6e99947ffTRRzlwjZHCTzrppPz8SiutlPtjR5Ab04aVSqXcrHy33XZrchpjqrFYZmTo0KF5VPUYOC1GMV9iiSVyTXv5GKLmPgoK9ttvv7TmmmvmweCi8CBGJi+L6dAefvjhXEgQ6f/iiy/SIosskjbbbDM13zRbh5P+bzC+1qw0ulTpJAAwB3UoxV1YlZo0aVLq3bt3mjhxYuu7MRvTu4X2M7Fl9gMFWXzkHS2yn3fnan7f3f/OMyC9s96v0hKLLJDm6twhpf6rtkhaoCXFgHBRex8FEvVHjG/V+dgcUMTxC7oBaG35mOblAAAAUBBBNwAAABRE0A0AAAAFEXQDAABAQQTdAAAAUBBBNwAAABRE0A0AAAAFEXQDAABAQQTdAAAAUBBBN0Ars/HGG6cjjjgitTcPPvhg6tChQ/rPf/5T0XSMGTMmrbLKKk3e/t13383pfv755wtNFwBQnTpXOgEAhRjTew6/38RmbT58+PA0bty4BuvfeOONdNNNN6UuXbqkORHcR3B5zjnnpGqx+OKLp3/84x/pmmuuSbvvvnud55Zffvn0yiuvpMsvvzyfXwCA1kBNN0CFbLXVVunDDz+ssyyxxBJp/vnnTz179qx08lqtAQMG5MC6tr/97W9pwoQJae65565YugAAGiPoBqiQbt26pYUWWqjO0qlTpwbNy6N299RTT0377rtvDsYHDhyYLr744jr7ev/999Ouu+6a5p133hy077jjjrnZ84xETfBDDz2Uzj333Nw0OpbY/oorrsj7qO2WW27Jz9dvfn3VVVfltPXu3TvXOn/xxRc120yfPj2NHTs2FyJ07949rbzyyumPf/xjnf3++c9/Tt/73vfy85tssslM01vbnnvumdMex1x22WWX5fWdO9dtwPXee+/lczHPPPOkXr165XP00Ucf1dnmtNNOSwsuuGA+t/vtt1/673//2+A9L7300rTccsulueaaKy277LLpt7/9bZPSCgAg6AaoAr/61a/S6quvnp577rl00EEHpf/93/9Nr732Wn7um2++SVtuuWUOGh955JH02GOP5SAzatKnTp3a6P4i2F5nnXXS/vvvX1PLHjXITfXWW2/lYPz222/PSwTBEbyWRcB95ZVXpgsvvDC9/PLL6cgjj0w/+tGP8nYhAuadd945bb/99rkv9I9//OM0cuTIJr13BMhxvOXm+ZMnT07XXXddLpSoLQL/CLg/++yz/L733ntvevvtt9Nuu+1Ws83111+fCxGiUOPpp59OCy+8cIOA+ve//3362c9+ln7xi1+kv//973nbUaNGNdo9AACgPn26ASokgtUIjsu23nrrdMMNNzS67TbbbJOD7XDcccels88+Oz3wwANpmWWWyQFnBJhRG1uukY7m11FjHYOTbbHFFg32F7XTXbt2TT169Mg17M0V7xe14uVm8HvttVe6//77c2A6ZcqUHJjed999ObAPSy65ZHr00UfTRRddlDbaaKN0wQUXpEGDBuXChBDH8eKLL6bTTz+9Se8fAfZRRx2VTjjhhFyDHvuqP/hZpCf2+c4779QUKERBQPT9fuqpp9Iaa6yR+7NH7XYs4ec//3lOd+3a7tGjR+d0RiFBiNr76DsexzJs2LBmnzsAoH1R0w1QIdGkOmp5y8t55503w21XWmmlmv9HYB2B8scff5wfjx8/Pr355ps5AI4gPpZoYh6BY9RIR+13eX0sUXP7XUWz8tr9zqOGuJyeSEvUPn//+9+v874R8EZ6QtQYr7XWWnX2WQ7Qm2LbbbdNX375ZXr44Ydz0/L6tdzl94hgu3YN/uDBg3NhRDzXlHR89dVXOc0RlNc+lgjOy8cCADAzaroBKiQG/VpqqaWatG390cwj8I7a5hDB55AhQxoNphdYYIFco117Oqtonj0jHTt2TKVSqc66aL7e3PSEO+64Iy2yyCIN+rG3hOi7HbXrUQv9xBNPpJtvvjkVoXwsl1xySYPgPPrfAwDMiqAboMqtttpquYl5v3798mBhjWksuI9gfNq0aQ2C9BgQLWp4yyOBN3f+6ahNjuA6BjGLpuSNiUHJbrvttgYjkDdH1G6feeaZuY/2fPPN1+h7RN/xWMq13dEsPOYBjzSWt4mgfe+99240HVFA0b9//9wXPAZqAwBoLkE3QJWLYPCMM87Ig4adfPLJadFFF81zWcd838cee2x+PKMm4hFwxqjh5SbpUZsb/bx/+tOfpsMOOyw/H323myOanR999NF58LSo/V5//fXTxIkT8wBvUSgQ/aAPPPDA3E/6mGOOyYOoPfPMM81+nwiYP/3005zexmy++eZpxRVXzOcn+m5/++23uV98FATEoHTh8MMPzyO5x+P11lsvtxaIgd+iD3rZSSedlM9F9IOPwemiz3oMuvb555+nESNGNCvNAED7o083QJWLoDP6NsdUYjHYVwSj5amvZlTzHSIwjibSUesbNdxRMx2B99VXX52n84qA9ZprrsmjezfXKaeckkf4jlHMIz0RrEZz8xiELERab7zxxjwCekwnFqOcx+BrzdWnT5885Vhjosn7rbfemmvBN9xwwxyERzAdrQLKopY80hmFE9FEPworYmT42qJQIAapi8Hp4pxE0B4FBOVjAQCYmQ6l+p33qsikSZNyzUPUoMzsxrIixvRuof1MbJn9QEEWH3lHi+zn3bn2aPZr/jvPgPTOer9KSyyyQJqrc4eU+q/aImmBlhSFHzGCegTpMc931eRjc0ARx9/hpP83p3xrVRpdtbdeAMxGPqamGwAAAAoi6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AaqV2l6/JOmGwiYVizmKgcA2q/OlU4AwOzqOvmj1PHrz9IHn/dKC/SeK3X9+us8NzO0BjEj59SpU9Mnn3ySOnbsmLp27VrpJAEAFSDoBqpWx9K3aYknR6UPl903fbDAKin9t3ulkwQN9OjRIw0cODAH3gBA+yPoBqpa1/9+mgY+f0b6tmuvNG3E65VODtTRqVOn1LlzZy0wAKAdE3QDVa9DKqUuUyemLnPNVemkAABAHdq6AQAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcA8J385je/SYsvvniaa6650lprrZWefPLJSicJAFoNQTcAMNuuu+66NGLEiDR69Oj07LPPppVXXjltueWW6eOPP6500gCgVehc6QQAANXrrLPOSvvvv3/aZ5998uMLL7ww3XHHHemyyy5LI0eObNI+pk2blpcWMT21ei12rABUxfW8c6UTOWbMmHT11VenCRMmpP79+6fhw4enE088MXXo0KGSSQMAZmHq1KnpmWeeSccff3zNuo4dO6bNN988Pf744w22nzJlSl7KJk2alP/ec889qUePHi2TqDdSq/fnP/+50kkAoAVMnjy59Qfdp59+errgggvSuHHj0vLLL5+efvrpXFLeu3fvdNhhh1UyaQDALHz66ae5AH3BBRessz4ev/rqqw22Hzt2bDrppJMKTdNtP7yt0P3Tzu2wQ2rVbvP9h9aookH3X//617TjjjumbbfdNj+OQViuueYaA7AAQBsUNeLR/7t2TfeAAQPSFltskXr16lXRtEGbsM02lU4BtCuT/v8WW6066F533XXTxRdfnF5//fX0ve99L40fPz49+uijuX8YANC69e3bN3Xq1Cl99NFHddbH44UWWqjB9t26dctLfbGPWIDvyO8I5qim5l0VDbpjgJUoHVh22WVzgqOJ2i9+8Yu05557Nrr9jPqCAQBzXteuXdOQIUPS/fffn4YOHZrXTZ8+PT8+5JBDKp08AGgVKhp0X3/99en3v/99+sMf/pD7dD///PPpiCOOyAOqDRs2rCJ9wRYfeUeL7OfduVLFtdyx7NEi+0ljJs72Sx1LQ++e9n/dMmg5vmcNOZaWPZa2KJqLR569+uqrpzXXXDOdc8456auvvqoZzRwA2ruKBt3HHHNMru3efffd8+MVV1wx/eMf/8jBdWNB94z6ggEAlbHbbrulTz75JP3sZz/LM5Gsssoq6a677mowuBoAtFedKz3EekwtUls0M4+maY2ZUV8wAKByoim55uQA0AqD7u233z734R44cGBuXv7cc8/lQdT23XffSiYLAAAAqj/oPv/889OoUaPSQQcdlD7++OPcl/snP/lJbqIGAAAA1a6iQXfPnj3zgCuxAAAAQFtTt0M1AAAA0GIE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwAAQEEE3QAAAFAQQTcAAAAURNANAAAABRF0AwDN9u6776b99tsvLbHEEql79+5p0KBBafTo0Wnq1KmVThoAtCqdK50AAKD6vPrqq2n69OnpoosuSksttVR66aWX0v7775+++uqrdOaZZ1Y6eQDQagi6AYBm22qrrfJStuSSS6bXXnstXXDBBYJuAKhF0A0AtIiJEyem+eeff4bPT5kyJS9lkyZNmkMpA4DK0acbAPjO3nzzzXT++eenn/zkJzPcZuzYsal37941y4ABA+ZoGgGgEgTdAECNkSNHpg4dOsx0if7ctf3rX//KTc1/8IMf5H7dM3L88cfn2vDy8v7778+BIwKAytK8HACocdRRR6Xhw4fPdJvov132wQcfpE022SStu+666eKLL57p67p165YXAGhPBN0AQI0FFlggL00RNdwRcA8ZMiRdfvnlqWNHDegAoL6K546RYf/oRz9Kffr0yfN8rrjiiunpp5+udLIAgFnk3xtvvHEaOHBgHq38k08+SRMmTMgLANBKaro///zztN566+VS8jvvvDOXrL/xxhtpvvnmq2SyAIBZuPfee/PgabEsuuiidZ4rlUoVSxcAtDYVDbpPP/30PHJpNEkrW2KJJSqZJACgCaLf96z6fgMAFW5eftttt6XVV189j3bar1+/tOqqq6ZLLrlkhtvH3J4xp2ftBQAAAFqrigbdb7/9drrgggvS0ksvne6+++70v//7v+mwww5L48aNa3R783sCAABQTSoadE+fPj2tttpq6dRTT8213AcccECe3/PCCy9sdHvzewJAQw8//HD69ttvG6yPdfEcANBOg+6FF144DR48uM665ZZbLr333nuNbh9ze/bq1avOAgDtXQxI+tlnnzVYHwXU8RwA0E6D7hi5/LXXXquz7vXXX0+LLbZYxdIEANUmRgvv0KFDg/X//ve/09xzz12RNAEArWD08iOPPDKtu+66uXn5rrvump588sl08cUX5wUAmLmdd945/42AO0YSjxZhZdOmTUsvvPBCzmcBgHYadK+xxhrp5ptvzn21Tz755Dxd2DnnnJP23HPPSiYLAKpCDCparunu2bNn6t69e81zXbt2TWuvvXYeKwUAaKdBd9huu+3yAgA0z+WXX57/Lr744unoo4/WlBwAWqGKB90AwHczevToSicBAGiNA6kBAN/dRx99lPbaa6/Uv3//1Llz59SpU6c6CwBQOWq6AaDKxSBqMd3mqFGj8nScjY1kDgBUhqAbAKrco48+mh555JG0yiqrVDopAEA9mpcDQJUbMGBAHsEcAGh9BN0AUOVius2RI0emd999t9JJAQDq0bwcAKrcbrvtliZPnpwGDRqUevTokbp06VLn+c8++6xiaQOA9k7QDQBtoKYbAGidBN0AUOWGDRtW6SQAADOgTzcAtAFvvfVWOvHEE9MPf/jD9PHHH+d1d955Z3r55ZcrnTQAaNcE3QBQ5R566KG04oorpieeeCLddNNN6csvv8zrx48fn0aPHl3p5AFAuyboBoAqFyOX//znP0/33ntv6tq1a836TTfdNP3tb3+raNoAoL0TdANAlXvxxRfTTjvt1GB9v3790qefflqRNAEA/0fQDQBVbt55500ffvhhg/XPPfdcWmSRRSqSJgDg/wi6AaDK7b777um4445LEyZMSB06dEjTp09Pjz32WDr66KPT3nvvXenkAUC7JugGgCp36qmnpmWXXTYNGDAgD6I2ePDgtOGGG6Z11103j2gOAFSOeboBoMrF4GmXXHJJGjVqVHrppZdy4L3qqqumpZdeutJJA4B2T9ANAG3EwIED8wIAtB6CbgCocqVSKf3xj39MDzzwQPr4449zn+7aYu5uAKAyBN0AUOWOOOKIdNFFF6VNNtkkLbjggnkwNQCgioPub775Jo+QOnny5LTAAguk+eefv+VTBgA0yVVXXZVrs7fZZptKJwUAmN3Ry7/44ot0wQUXpI022ij16tUrLb744mm55ZbLQfdiiy2W9t9///TUU081dXcAQAvp3bt3WnLJJSudDABgdoPus846KwfZl19+edp8883TLbfckp5//vn0+uuvp8cffzyNHj06ffvtt2mLLbZIW221VXrjjTeaslsAoAWMGTMmnXTSSenrr7+udFIAgNlpXh412A8//HBafvnlG31+zTXXTPvuu2+68MILc2D+yCOPmKYEAOaQXXfdNV1zzTWpX79+uZC8S5cudZ5/9tlnK5Y2AGjvmhR0R0beFN26dUsHHnjgd00TANAMw4YNS88880z60Y9+ZCA1AGgro5dPmTKlJtAGACrnjjvuSHfffXdaf/31K50UAGB2B1IL9957bx4Zdb755ks9evTIS/w/1t13333N2RUA0EIGDBiQBzkFAKo46B43blwOrmOE1LPPPjvdfvvteYn/zzvvvPm5mLIEAJizfvWrX6Vjjz02vfvuu5VOCgAwu83Lf/GLX6RzzjknHXzwwQ2eGz58eG7SdvLJJ6e99tqrqbsEAFpA9OWePHlyGjRoUG6FVn8gtc8++6xiaQOA9q7JQfd7772Xpwubkc022ywdddRRLZUuAKCJolAcAKjyoDumC/vd736XfvnLXzb6/GWXXZYGDx7ckmkDAJo4ejkAUOVBd/QX22677dJdd92Va7xjSpLw0Ucfpfvvvz+9/fbbefRUAGDOe+utt9Lll1+e/5577rl5zu4777wzDRw4MBecAwCtfCC1jTfeOL300ktp6623znOBRs12LPH/WPfiiy+mDTfcsNjUAgANPPTQQ2nFFVdMTzzxRLrpppvSl19+mdePHz8+jR49utLJA4B2rVnzdC+++OLp9NNPLy41AECzjRw5Mv385z9PI0aMSD179qxZv+mmm6Zf//rXFU0bALR3zZqnGwBofaK12U477dRgfTQx//TTTyuSJgCghYPuaMLWqVOnltodANBE8847b/rwww8brH/uuefSIossUpE0AQAF1HSXSqWW3B0A0AS77757Ou6449KECRNShw4d0vTp09Njjz2Wjj766LT33ntXOnkA0K41uU/3zjvvPNPnJ06cmDN6AGDOOvXUU9PBBx+cBgwYkKZNm5an8Iy/e+yxRzrxxBMrnTwAaNeaHHT/6U9/St///vdrpgqrLzJ3AGDO69q1a7rkkkvSqFGj8kwjMXr5qquumpZeeulKJw0A2r0mB93LLbdc2mWXXdJ+++3X6PPPP/98uv3221sybQBAEzz66KNp/fXXz3NyxwIAVGGf7iFDhqRnn312hs9369ZNRg8AFRBTgy2xxBLppz/9aXrllVcqnRwAYHaC7gsvvDCdccYZM60Jf+edd5q6OwCghXzwwQfpqKOOSg899FBaYYUV0iqrrJLz7H/+85+VThoAtHtNDrqjJrtHjx7FpgYAaLa+ffumQw45JI9Y/tZbb6Uf/OAHady4cWnxxRfPteAAQJVOGbbttts2Oi8oAFAZ0cx85MiR6bTTTksrrrhirv0GAKo06H744YfT119/3XKpAQBmW9R0H3TQQWnhhRfO04VFU/M77rij0skCgHatyaOXAwCt0/HHH5+uvfba3Lc7pvc899xz04477qhbGABUe9C92GKLpS5durRcagCA2Wp5dswxx6Rdd9019+8GANpI0P3SSy+1XEoAgNluVg4AtJGg+8knn0yPP/54mjBhQn680EILpXXWWSetueaaRaQPAGiCGLX8nHPOSX//+9/z48GDB6fDDz88DRo0qNJJA4B2rclB98cff5x22WWXXJo+cODAtOCCC+b1H330UTryyCPTeuutl2688cbUr1+/ItMLANRz9913px122CHPzx35cYj8evnll09/+tOfcj9vAKCVB90xGuq0adNyCfoyyyxT57nXXnst7bvvvunggw9ON9xwQxHpBABmIKYIiwLwmCas/vrjjjtO0A0A1TBlWJSi/+Y3v2kQcIdYd95556W77rqrpdMHAMxCFIjvt99+DdZHgfgrr7xSkTQBAM0Murt165YmTZo0w+e/+OKLvA0AMGctsMAC6fnnn2+wPtbp9gUAVdK8fLfddkvDhg1LZ599dtpss81Sr1698voIxO+///40YsSI9MMf/rDItAIAjdh///3TAQcckN5+++207rrr1vTpPv3003P+DABUQdB91llnpenTp6fdd989ffvtt6lr1655/dSpU1Pnzp1zs7YzzzyzyLQCAI0YNWpU6tmzZ/rVr36Vjj/++Lyuf//+acyYMemwww6rdPIAoF1rctAdTccvuOCCXGr+zDPP1JkybMiQITU13wDAnBMF4X/4wx/SHnvskQdTi+5eIYJwAKAK5+mO4HqTTTYpJjUAQLNEa7MDDzywZn5uwTYAVOFAatdee22Td/j+++/nfmQAwJyx5pprpueee67SyQAAZjfojmblyy23XPrlL39ZU5Je28SJE9Of//zn3LRttdVWS//+97+bslsAoAUcdNBB6aijjkq//vWv0+OPP55eeOGFOgsA0Mqblz/00EPptttuS+eff34eoGXuuedOCy64YJprrrnS559/nvt39+3bNw0fPjy99NJL+TkAYM6IQU5D7UHTOnTokEqlUv47bdq0CqYOANq3Jvfp3mGHHfLy6aefpkcffTT94x//SF9//XUOtlddddW8dOzY5Gm/AYAW8s4771Q6CQBASw2kFkH20KFDm/syAKAgiy22WKWTAAC0VNANALQ+r732Wu4GVh57JcZiOfTQQ9MyyyxT6aQBQLumPTgAVLkbb7wxrbDCCumZZ55JK6+8cl6effbZvC6eAwAqR003AFS5Y489Ng90evLJJ9dZP3r06PzcLrvsUrG0AUB7p6YbAKrchx9+mPbee+8G63/0ox/l5wCAKgy6p06dmvuPffvtty2bIgCgWTbeeOP0yCOPNFgfs41ssMEGFUkTADCbzcsnT56cB2YZN25cfvz666+nJZdcMq9bZJFF0siRI5u7SwDgO4gpPY877rjcp3vttdfO6/72t7+lG264IZ100knptttuq7MtANCKg+7oMzZ+/Pj04IMPpq222qpm/eabb57GjBkj6AaAOeyggw7Kf3/729/mpbHnQocOHdK0adPmePoAoD1rdtB9yy23pOuuuy6XpEfmXbb88sunt956q6XTBwDMwvTp0yudBACgpfp0f/LJJ6lfv34N1n/11Vd1gnAAAABo75pd07366qunO+64I/fhDuVA+9JLL03rrLNOy6cQAJilp556Kj3wwAPp448/blDzfdZZZ1UsXQDQ3jU76D711FPT1ltvnV555ZU8cvm5556b///Xv/41PfTQQ8WkEgCYad584oknpmWWWSYtuOCCdVqeaYUGAFUWdK+//vp5ILWxY8emFVdcMd1zzz1ptdVWS48//nh+DADMWVEAftlll6Xhw4dXOikAwHcJur/55pv0k5/8JI0aNSpdcsklzXkpAFCQjh07pvXWW6/SyQAAvutAal26dEk33nhjc14CABTsyCOPTL/5zW8qnQwAoCWalw8dOjRPGxYZPABQeUcffXTadttt06BBg9LgwYNzIXltN910U8XSBgDtXbOD7qWXXjqdfPLJ6bHHHktDhgxJc889d53nDzvssJZMHwAwC5H3xsjlm2yySerTp4/B0wCgmoPu3/3ud2neeedNzzzzTF5qi0xe0A0Ac9a4ceNy96+o7QYAqjzofuedd4pJCQAwW+aff/7ctBwAqPKB1OorlUp5AQAqZ8yYMWn06NFp8uTJlU4KANASQfeVV16Z5+Tu3r17XlZaaaV01VVXzc6uAIDv6Lzzzkt33nlnWnDBBXP+vNpqq9VZAIAqal5+1lln5Xm6DznkkJo5QR999NF04IEHpk8//dSo5gAwh8XMIgBAGwm6zz///HTBBRekvffeu2bdDjvskJZffvncvE3QDQBzVjQtr6QpU6aktdZaK40fPz4999xzaZVVVqloegCgqpuXf/jhh2nddddtsD7WxXMAQPty7LHHpv79+1c6GQDQNoLupZZaKl1//fUN1l933XV5Dm8AYM6Yb7758sjls1qKFH3J77nnnnTmmWcW+j4A0G6al5900klpt912Sw8//HBNn+7HHnss3X///Y0G4wBAMc4555yKvv9HH32U9t9//3TLLbekHj16NKkZeixlkyZNKjiFAFCFQfcuu+ySnnjiiXT22WfnTDYst9xy6cknn0yrrrpqEWkEABoxbNiwir13TBk6fPjwPJDq6quvnt59991Zvmbs2LG58B4A2pNmB91hyJAh6eqrr2751AAAFTVy5Mh0+umnz3Sbv//977lJ+RdffJGOP/74Ju87th0xYkSdmu4BAwZ8p/QCQJsLuv/85z+nTp06pS233LLO+rvvvjtNnz49bb311i2ZPgBgDjrqqKNyDfbMLLnkkukvf/lLevzxx1O3bt3qPBe13nvuuWcaN25cg9fFtvW3B4C2rvPslICfdtppjTYzi+cE3QBQvRZYYIG8zMp5552Xfv7zn9c8/uCDD3KBfAysGtOHAQCzGXS/8cYbafDgwQ3WL7vssunNN99s7u4AgCo0cODAOo/nmWee/HfQoEFp0UUXrVCqAKANTBnWu3fv9PbbbzdYHwH33HPP3VLpAgCaaerUqem1115L3377baWTAgDMbtC94447piOOOCK99dZbdQLu6AO2ww47NHd3AMB3NHny5LTffvvlabuWX3759N577+X1hx56aKNdwoqw+OKL565mq6yyyhx5PwBos0H3L3/5y1yjHc3Jl1hiibzElGF9+vRJZ555ZjGpBABmOir4+PHj04MPPpjmmmuumvWbb7557mMNAFRRn+5oXv7Xv/413XvvvTmD7969e1pppZXShhtuWEwKAYCZuuWWW3Jwvfbaa6cOHTrUrI9a79ot0wCAKqjpDpGhb7HFFumYY45JhxxySIsE3NH8LfYbTdcBgKb75JNPUr9+/Rqs/+qrr+oE4QBAKw66Yy7O22+/vc66K6+8Mjcvj4z+gAMOSFOmTJmtRDz11FPpoosuyjXmAEDzxNzYd9xxR83jcqB96aWXpnXWWaeCKQMAmty8/OSTT04bb7xx2m677fLjF198MQ/aMnz48Nyn+4wzzkj9+/dPY8aMaVYCvvzyy7TnnnumSy65pM58nwBA05x66qlp6623Tq+88koeufzcc8/N/4/uYA899FClkwcA7VqTa7qff/75tNlmm9U8vvbaa9Naa62Vg+URI0ak8847L11//fXNTsDBBx+ctt122zzYy6xETfqkSZPqLADQ3q2//vp5nJUIuFdcccV0zz335FZo0UptyJAhlU4eALRrTa7p/vzzz9OCCy5Y8zhKzqNUvWyNNdZI77//frPePAL3Z599Njcvb4qxY8emk046qVnvAQBt2TfffJN+8pOfpFGjRuWCcACgSmu6I+B+55138v+nTp2ag+UYJbXsiy++SF26dGnyG0eAfvjhh6ff//73daY3mdWUKBMnTqxZmhvkA0BbE3nvjTfeWOlkAADfNejeZptt0siRI9MjjzySg98ePXqkDTbYoOb5F154IQ0aNKipu0vPPPNM+vjjj9Nqq62WOnfunJeoPY9m6vH/adOmNXhNt27dUq9eveosANDeDR06NE8bBgBUcfPyU045Je28885po402SvPMM08aN25c6tq1a83zl112WZ5GrKmif3gMxlbbPvvsk5Zddtl03HHHpU6dOjV5XwDQni299NJ5wNPHHnss9+Gee+656zx/2GGHVSxtANDeNTno7tu3b3r44Ydzs+4IuusHxTfccENe31Q9e/ZMK6ywQp11cZPQp0+fBusBgBn73e9+l+add97ciiyW2mL6MEE3AFRB0F3Wu3fvRtfPP//8LZEeAKCZymOuAABtIOgu0oMPPljpJABAVSuVSjU13ABAFQ2kBgC0XldeeWWeo7t79+55WWmlldJVV11V6WQBQLvXqmq6AYDmO+uss/I83Yccckhab7318rpHH300HXjggenTTz9NRx55ZKWTCADtlqAbAKrc+eefny644IK0995716zbYYcd0vLLL5/GjBkj6AaACtK8HACq3IcffpjWXXfdButjXTwHAFSOoBsAqtxSSy2Vrr/++gbrr7vuujyHNwBQOZqXA0CVO+mkk9Juu+2WHn744Zo+3Y899li6//77Gw3GAYA5R003AFS5XXbZJT3xxBOpb9++6ZZbbslL/P/JJ59MO+20U6WTBwDtmppuAGgDhgwZkq6++upKJwMAqEdNNwBUuT//+c/p7rvvbrA+1t15550VSRMA8H8E3QBQ5UaOHJmmTZvWYH2pVMrPAQCVI+gGgCr3xhtvpMGDBzdYv+yyy6Y333yzImkCAP6PoBsAqlzv3r3T22+/3WB9BNxzzz13RdIEAPwfQTcAVLkdd9wxHXHEEemtt96qE3AfddRRaYcddqho2gCgvRN0A0CV++Uvf5lrtKM5+RJLLJGX5ZZbLvXp0yedeeaZlU4eALRrpgwDgDbQvPyvf/1ruvfee9P48eNT9+7d00orrZQ23HDDSicNANo9QTcAtAEdOnRIW2yxRV4AgNZD83IAqFKPP/54uv322+usu/LKK3Pz8n79+qUDDjggTZkypWLpAwAE3QBQtU4++eT08ssv1zx+8cUX03777Zc233zzPD/3n/70pzR27NiKphEA2jtBNwBUqeeffz5tttlmNY+vvfbatNZaa6VLLrkkjRgxIp133nnp+uuvr2gaAaC9E3QDQJX6/PPP04ILLljz+KGHHkpbb711zeM11lgjvf/++xVKHQAQBN0AUKUi4H7nnXfy/6dOnZqeffbZtPbaa9c8/8UXX6QuXbpUMIUAgKAbAKrUNttsk/tuP/LII+n4449PPXr0SBtssEHN8y+88EIaNGhQRdMIAO2dKcMAoEqdcsopaeedd04bbbRRmmeeedK4ceNS165da56/7LLLTCEGABUm6AaAKtW3b9/08MMPp4kTJ+agu1OnTnWev+GGG/J6AKByBN0AUOV69+7d6Pr5559/jqcFAKhLn24AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AYLbdcccdaa211krdu3dP8803Xxo6dGilkwQArUrnSicAAKhON954Y9p///3TqaeemjbddNP07bffppdeeqnSyQKAVkXQDQA0WwTYhx9+eDrjjDPSfvvtV7N+8ODBFU0XALQ2mpcDAM327LPPpn/961+pY8eOadVVV00LL7xw2nrrrdV0A0A9gm4AoNnefvvt/HfMmDHpxBNPTLfffnvu073xxhunzz77rNHXTJkyJU2aNKnOAgBtnaAbAKgxcuTI1KFDh5kur776apo+fXre/oQTTki77LJLGjJkSLr88svz8zfccEOj+x47dmzq3bt3zTJgwIA5fHQAMOfp0w0A1DjqqKPS8OHDZ7rNkksumT788MMGfbi7deuWn3vvvfcafd3xxx+fRowYUfM4aroF3gC0dYJuAKDGAgsskJdZiZrtCLJfe+21tP766+d133zzTXr33XfTYost1uhrYvtYAKA9EXQDAM3Wq1evdOCBB6bRo0fn2uoItGMk8/CDH/yg0skDgFZD0A0AzJYIsjt37pz22muv9PXXX6e11lor/eUvf8kDqgEA/0fQDQDMli5duqQzzzwzLwBA44xeDgAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAADQFoPusWPHpjXWWCP17Nkz9evXLw0dOjS99tprlUwSAAAAtI2g+6GHHkoHH3xw+tvf/pbuvffe9M0336QtttgiffXVV5VMFgAAALSIzqmC7rrrrjqPr7jiilzj/cwzz6QNN9ywYukCAACANtene+LEifnv/PPPX+mkAAAAQHXXdNc2ffr0dMQRR6T11lsvrbDCCo1uM2XKlLyUTZo0aQ6mEAAAAKq0pjv6dr/00kvp2muvnenAa717965ZBgwYMEfTCAAAAFUXdB9yyCHp9ttvTw888EBadNFFZ7jd8ccfn5ugl5f3339/jqYTAAAAqqZ5ealUSoceemi6+eab04MPPpiWWGKJmW7frVu3vAAAAEA16FzpJuV/+MMf0q233prn6p4wYUJeH03Hu3fvXsmkAQAAQHU3L7/gggtyM/GNN944LbzwwjXLddddV8lkAQAAQNtoXg4AAABtVasYSA0AAADaIkE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3AAAAFETQDQAAAAURdAMAAEBBBN0AAABQEEE3ADBbXn/99bTjjjumvn37pl69eqX1118/PfDAA5VOFgC0KoJuAGC2bLfddunbb79Nf/nLX9IzzzyTVl555bxuwoQJlU4aALQagm4AoNk+/fTT9MYbb6SRI0emlVZaKS299NLptNNOS5MnT04vvfRSpZMHAK2GoBsAaLY+ffqkZZZZJl155ZXpq6++yjXeF110UerXr18aMmRIpZMHAK1G50onAACoPh06dEj33XdfGjp0aOrZs2fq2LFjDrjvuuuuNN988zX6milTpuSlbNKkSXMwxQBQGWq6AYAa0Vw8AuqZLa+++moqlUrp4IMPzoH2I488kp588skcgG+//fbpww8/bHTfY8eOTb17965ZBgwYMMePD76TUql1L0CrpKYbAKhx1FFHpeHDh890myWXXDIPnnb77benzz//PI9cHn7729+me++9N40bNy4H7/Udf/zxacSIEXVqugXeALR1gm4AoMYCCyyQl1mJAdNCNCuvLR5Pnz690dd069YtLwDQnmheDgA02zrrrJP7bg8bNiyNHz8+z9l9zDHHpHfeeSdtu+22lU4eALQagm4AoNn69u2bB0378ssv06abbppWX3319Oijj6Zbb701z9cNAPwfzcsBgNkSgfbdd99d6WQAQKumphsAAAAKIugGAACAggi6AQAAoCCCbgAAACiIoBsAAAAKIugGAACAggi6AQAAoCCCbgAAACiIoBsAAAAKIugGAACAggi6AQAAoCCCbgAAAGjLQfdvfvObtPjii6e55porrbXWWunJJ5+sdJIAAACg+oPu6667Lo0YMSKNHj06Pfvss2nllVdOW265Zfr4448rnTQAAACo7qD7rLPOSvvvv3/aZ5990uDBg9OFF16YevTokS677LJKJw0AAACqN+ieOnVqeuaZZ9Lmm2/+/xLUsWN+/Pjjj1cyaQAAAPCddU4V9Omnn6Zp06alBRdcsM76ePzqq6822H7KlCl5KZs4cWL+O2nSpBZL0/Qpk1tkP5M6lFpkP+k7HJtjaePH0oLf+++iVX023/GctKpjaS3fM8fSyI5a7rdX/h2XSi2UtipTPu7Wcj0DgCLy8YoG3c01duzYdNJJJzVYP2DAgNTa9G6pHZ3WYnuabY6llR7LOalN6d1GPpc29z1rqR05lpn64osvUu/elT9Hc1ocd2vNxwGgpfLxigbdffv2TZ06dUofffRRnfXxeKGFFmqw/fHHH58HXSubPn16+uyzz1KfPn1Shw4dUmsq8YgbiPfffz/16tUrVTPH0jq1pWNpa8fjWFqn1nosUTIeGXX//v1TexTHHZ9Jz549W1U+3tq/N+35WNrKcbSlY2krxxEcS+szqZUfR1Pz8YoG3V27dk1DhgxJ999/fxo6dGhNIB2PDznkkAbbd+vWLS+1zTvvvKm1ii9Ga/xyzA7H0jq1pWNpa8fjWFqn1ngs7bGGu/Y4Losuumhq7Vrj96a9H0tbOY62dCxt5TiCY2l9erXi42hKPl7x5uVRcz1s2LC0+uqrpzXXXDOdc8456auvvsqjmQMAAEA1q3jQvdtuu6VPPvkk/exnP0sTJkxIq6yySrrrrrsaDK4GAAAA1abiQXeIpuSNNSevVtEEfvTo0Q2awlcjx9I6taVjaWvH41hap7Z0LMw5bel701aOpa0cR1s6lrZyHMGxtD7d2shxdCi113lKAAAAoGAdi34DAAAAaK8E3QAAAFAQQTcAAAAURNDdgh5++OG0/fbb58nRO3TokG655ZZUrcaOHZvWWGON1LNnz9SvX788j/prr72WqtEFF1yQVlpppZr5/dZZZ5105513prbgtNNOy9+1I444IlWbMWPG5LTXXpZddtlUrf71r3+lH/3oR6lPnz6pe/fuacUVV0xPP/10qkaLL754g88mloMPPjhVm2nTpqVRo0alJZZYIn8ugwYNSqecckoynAntJU9vK/l5W83L5eOtR1vIx+XfrVerGL28rYj5xVdeeeW07777pp133jlVs4ceeij/QCOj/vbbb9NPf/rTtMUWW6RXXnklzT333KmaLLroojlTW3rppfMPddy4cWnHHXdMzz33XFp++eVTtXrqqafSRRddlG9CqlWc//vuu6/mcefO1XlJ+vzzz9N6662XNtlkk3wTuMACC6Q33ngjzTfffKlav1uR2ZW99NJL6fvf/376wQ9+kKrN6aefnm/W43cf37e4gdpnn31S796902GHHVbp5NGKtZU8va3k520xL5ePtx5tJR+Xf7diMXo5LS9O7c0331xqKz7++ON8TA899FCpLZhvvvlKl156aalaffHFF6Wll166dO+995Y22mij0uGHH16qNqNHjy6tvPLKpbbguOOOK62//vqltiq+X4MGDSpNnz69VG223Xbb0r777ltn3c4771zac889K5Ymqk9bytPbUn5ezXm5fLx1aav5uPy79dC8nCaZOHFi/jv//POnahalf9dee22uwYimadUqai223XbbtPnmm6dqFqXI0XRzySWXTHvuuWd67733UjW67bbb0uqrr55LkqP55qqrrpouueSS1BZMnTo1XX311bm2L5qoVZt111033X///en111/Pj8ePH58effTRtPXWW1c6aVARbSE/bwt5uXy8dWmL+bj8u3WpzjYgzFHTp0/PfY2i2c0KK6yQqtGLL76YM+b//ve/aZ555kk333xzGjx4cKpGcaPx7LPP5iZE1WyttdZKV1xxRVpmmWXShx9+mE466aS0wQYb5KZQ0fewmrz99tu5CdSIESNy0834bKLpU9euXdOwYcNSNYt+rP/5z3/S8OHDUzUaOXJkmjRpUu5n2KlTp3yz/otf/CLfHEJ7U+35eVvJy+XjrU9bzMfl361Mpava26q21BTtwAMPLC222GKl999/v1StpkyZUnrjjTdKTz/9dGnkyJGlvn37ll5++eVStXnvvfdK/fr1K40fP75mXbU2S6vv888/L/Xq1asqmwp26dKltM4669RZd+ihh5bWXnvtUrXbYostStttt12pWl1zzTWlRRddNP994YUXSldeeWVp/vnnL11xxRWVThpVpK3k6dWen7eFvFw+3jq1xXxc/t26CLoL0lYy6IMPPjh/4d9+++1SW7LZZpuVDjjggFK1ie9UfLc6depUs8TjDh065P9/++23pWq2+uqr5xupajNw4MDSfvvtV2fdb3/721L//v1L1ezdd98tdezYsXTLLbeUqlVcv37961/XWXfKKaeUlllmmYqlierTFvL0tpifV2NeLh9vndpaPi7/bn00L6dRcY9x6KGH5qZbDz74YB6uv601sZsyZUqqNptttlluXldbjOQYTW+OO+643PymWn355ZfprbfeSnvttVeqNtFUs/4UPNEHabHFFkvV7PLLL89926LfYbWaPHly6tix7vAl8TuJawC0B205P6/GvFw+3jq1tXxc/t36CLpb+GLz5ptv1jx+55130vPPP58HKxk4cGCqtgE+/vCHP6Rbb70198uZMGFCXh/D9MdcedXk+OOPz4MuxGfwxRdf5OOKG4+77747VZv4LOr3w4spX2JOyWrrn3f00UfnOXAjQ/vggw/S6NGj88X0hz/8Yao2Rx55ZB7w49RTT0277rprevLJJ9PFF1+cl2oVmVpk2tGXrVqngAnxHYs+YPH7jylHYnqhs846Kw8sA+0hT28r+Xlbycvl461TW8rH5d+tVKWr2tuSBx54IDcRqr8MGzasVG0aO45YLr/88lK1iekGog9b165dSwsssEBujnbPPfeU2opq7Qu22267lRZeeOH8uSyyyCL58ZtvvlmqVn/6059KK6ywQqlbt26lZZddtnTxxReXqtndd9+df/OvvfZaqZpNmjQp/z6i6eBcc81VWnLJJUsnnHBC7hsK7SFPbyv5eVvOy+XjrUNbycfl361Th/in0oE/AAAAtEXm6QYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AYAAICCCLoBAACgIIJuAAAAKIigGwAAAAoi6AYAAICCCLqhjXr//ffTvvvum/r375+6du2aFltssXT44Yenf//735VOGgAwC/JxaDsE3dAGvf3222n11VdPb7zxRrrmmmvSm2++mS688MJ0//33p3XWWSd99tlnhb331KlTC9s3ALQH8nFoWwTd0AYdfPDBuVT8nnvuSRtttFEaOHBg2nrrrdN9992X/vWvf6UTTjghb9ehQ4d0yy231HntvPPOm6644oo6Je277rprXj///POnHXfcMb377rs1zw8fPjwNHTo0/eIXv8il8csss0w6+eST0worrNAgXausskoaNWpUoccOANVOPg5ti6Ab2pgo/b777rvTQQcdlLp3717nuYUWWijtueee6brrrkulUmmW+/rmm2/SlltumXr27JkeeeSR9Nhjj6V55pknbbXVVnVKwqPk/bXXXkv33ntvuv3223NzuL///e/pqaeeqtnmueeeSy+88ELaZ599WviIAaDtkI9D29O50gkAWlY0RYuMeLnllmv0+Vj/+eefp08++WSW+4pMffr06enSSy/Npenh8ssvz6XlDz74YNpiiy3yurnnnjtvE6XyZZHJx7ZrrLFGzeuitH7JJZdsoSMFgLZHPg5tj5puaKNmVQJeO2OdkfHjx+d+ZFFCHiXjsUTTtP/+97/prbfeqtluxRVXbLC//fffP/dDi22jNP0Pf/hDLjkHAGZNPg5th5puaGOWWmqpXJodzcJ22mmnBs/H+gUWWCCXcsd29TP1aIpW9uWXX6YhQ4ak3//+9w32E/soixLy+rbffvvUrVu3dPPNN+eMPPb7P//zPy1whADQdsnHoe0RdEMb06dPn/T9738//fa3v01HHnlknf5gEyZMyBlvDNBSznA//PDDOk3aJk+eXPN4tdVWy03T+vXrl3r16tWsdHTu3DkNGzYsN0eLzHr33Xdv0DcNAKhLPg5tj+bl0Ab9+te/TlOmTMn9sR5++OE8culdd92VM/Hvfe976Wc/+1nebtNNN83bxuAoTz/9dDrwwANTly5davYTg7X07ds3j3QaA7C88847uQ/YYYcdlv75z3/OMh0//vGP01/+8pf83pqkAUDTyMehbRF0Qxu09NJL5xFHY7CTmCZkscUWy1ONREZdHrk0/OpXv0oDBgxIG2ywQdpjjz3S0UcfnXr06FGzn/h/ZPYxVcnOO++cB2/Zb7/9cv+uppSYRzrWXXfdtOyyy6a11lqr0GMGgLZCPg5tS4dSU+YbAKre6NGj01lnnZWnA1l77bXnyHvG5SUy7Jj2ZMSIEXPkPQGgLZKPQ/USdEM7Ev2yJk6cmJuVdexYbEOXmMrk2muvTccff3xuFjfffPMV+n4A0NbJx6E6CbqBQsSIqtGP7Nxzz81N3gCA6iEfh5Yj6AYAAICCGEgNAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAACiLoBgAAgIIIugEAAKAggm4AAAAoiKAbAAAAUjH+P8sbCa8div6lAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1000x600 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average Base Model Score: 8.12\n",
      "Average Fine-tuned Model Score: 7.25\n",
      "Average Improvement: -0.88 (-10.8%)\n"
     ]
    }
   ],
   "source": [
    "# Visualize comparison results\n",
    "plt.figure(figsize=(10, 6))\n",
    "\n",
    "# Calculate improvement\n",
    "comparison_results['improvement'] = comparison_results['fine_tuned_score'] - comparison_results['base_score']\n",
    "\n",
    "# Bar chart comparing scores\n",
    "plt.subplot(1, 2, 1)\n",
    "x = np.arange(len(comparison_results))\n",
    "width = 0.35\n",
    "\n",
    "plt.bar(x - width/2, comparison_results['base_score'], width, label='Base Model')\n",
    "plt.bar(x + width/2, comparison_results['fine_tuned_score'], width, label='Fine-tuned Model')\n",
    "\n",
    "plt.xlabel('Query')\n",
    "plt.ylabel('Score (0-10)')\n",
    "plt.title('Base vs Fine-tuned Model Performance')\n",
    "plt.xticks(x, range(1, len(comparison_results) + 1))\n",
    "plt.legend()\n",
    "\n",
    "# Improvement chart\n",
    "plt.subplot(1, 2, 2)\n",
    "colors = ['green' if x > 0 else 'red' for x in comparison_results['improvement']]\n",
    "plt.bar(range(1, len(comparison_results) + 1), comparison_results['improvement'], color=colors)\n",
    "plt.axhline(y=0, color='k', linestyle='-', alpha=0.3)\n",
    "plt.xlabel('Query')\n",
    "plt.ylabel('Score Improvement')\n",
    "plt.title('Fine-tuned Model Improvement')\n",
    "\n",
    "plt.tight_layout()\n",
    "plt.show()\n",
    "\n",
    "# Show overall improvement\n",
    "avg_base_score = comparison_results['base_score'].mean()\n",
    "avg_fine_tuned_score = comparison_results['fine_tuned_score'].mean()\n",
    "avg_improvement = avg_fine_tuned_score - avg_base_score\n",
    "\n",
    "print(f\"Average Base Model Score: {avg_base_score:.2f}\")\n",
    "print(f\"Average Fine-tuned Model Score: {avg_fine_tuned_score:.2f}\")\n",
    "print(f\"Average Improvement: {avg_improvement:.2f} ({avg_improvement/avg_base_score*100:.1f}%)\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Conclusion\n",
    "\n",
    "We were able to train a fine-tuned model on our queries and designs, but the results were disappointing. We don't want to launch an embedding model that hurts our performance so we'll stick with the existing rag agent. But with more queries, more data, and testing more models, there may be a way to find improvements."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}