File size: 7,466 Bytes
8474f02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""Main script to run AI model evaluation benchmarks"""

import argparse
import asyncio
import json
import os
import yaml
from datetime import datetime
from typing import List, Dict, Any
from dotenv import load_dotenv
import pandas as pd

from apis.api_factory import APIFactory
from benchmarks import get_benchmark, BenchmarkResult

# Load environment variables
load_dotenv()

def load_config(config_path: str = 'official_config.yaml') -> dict:
    """Load configuration from YAML file"""
    with open(config_path, 'r') as f:
        config = yaml.safe_load(f)
    
    # Replace environment variables
    def replace_env_vars(obj):
        if isinstance(obj, str) and obj.startswith('${') and obj.endswith('}'):
            env_var = obj[2:-1]
            return os.getenv(env_var, obj)
        elif isinstance(obj, dict):
            return {k: replace_env_vars(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [replace_env_vars(item) for item in obj]
        return obj
    
    return replace_env_vars(config)

def save_results(results: List[BenchmarkResult], output_dir: str):
    """Save evaluation results"""
    os.makedirs(output_dir, exist_ok=True)
    
    # Create timestamp for this run
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    
    # Save detailed results as JSON
    detailed_results = []
    for result in results:
        detailed_results.append({
            'benchmark': result.benchmark_name,
            'model': result.model_name,
            'total_questions': result.total_questions,
            'correct': result.correct,
            'accuracy': result.accuracy,
            'avg_response_time': result.avg_response_time,
            'timestamp': timestamp
        })
    
    json_path = os.path.join(output_dir, f'results_{timestamp}.json')
    with open(json_path, 'w') as f:
        json.dump(detailed_results, f, indent=2)
    
    # Save summary as CSV
    df = pd.DataFrame(detailed_results)
    csv_path = os.path.join(output_dir, f'summary_{timestamp}.csv')
    df.to_csv(csv_path, index=False)
    
    # Save raw results for debugging
    for result in results:
        raw_path = os.path.join(output_dir, f'{result.model_name}_{result.benchmark_name}_{timestamp}_raw.json')
        with open(raw_path, 'w') as f:
            json.dump(result.raw_results, f, indent=2)
    
    return json_path, csv_path

def print_results_table(results: List[BenchmarkResult]):
    """Print results in a nice table format"""
    if not results:
        return
    
    # Group by model
    model_results = {}
    for result in results:
        if result.model_name not in model_results:
            model_results[result.model_name] = {}
        model_results[result.model_name][result.benchmark_name] = result
    
    # Print header
    benchmarks = list(set(r.benchmark_name for r in results))
    benchmarks.sort()
    
    print("\n" + "="*80)
    print("EVALUATION RESULTS")
    print("="*80)
    
    # Create table
    header = ["Model"] + benchmarks + ["Average"]
    print(f"{'Model':<20}", end="")
    for bench in benchmarks:
        print(f"{bench:<15}", end="")
    print(f"{'Average':<10}")
    print("-"*80)
    
    # Print results for each model
    for model, bench_results in model_results.items():
        print(f"{model:<20}", end="")
        scores = []
        
        for bench in benchmarks:
            if bench in bench_results:
                score = bench_results[bench].accuracy * 100
                scores.append(score)
                print(f"{score:>6.1f}%        ", end="")
            else:
                print(f"{'N/A':<15}", end="")
        
        # Calculate average
        if scores:
            avg = sum(scores) / len(scores)
            print(f"{avg:>6.1f}%")
        else:
            print("N/A")
    
    print("="*80)

async def run_single_evaluation(api, benchmark_name: str, config: dict) -> BenchmarkResult:
    """Run a single benchmark evaluation"""
    benchmark = get_benchmark(benchmark_name)
    
    # Get benchmark-specific config
    bench_config = config['benchmarks'].get(benchmark_name, {})
    eval_config = config['evaluation']
    
    # Merge configs
    kwargs = {
        **eval_config,
        'concurrent_requests': eval_config.get('concurrent_requests', 5)
    }
    
    # Add benchmark-specific configs but exclude sample_size
    for key, value in bench_config.items():
        if key != 'sample_size':
            kwargs[key] = value
    
    # Run benchmark
    result = await benchmark.run_benchmark(
        api,
        sample_size=bench_config.get('sample_size'),
        **kwargs
    )
    
    return result

async def main():
    parser = argparse.ArgumentParser(description='Run AI benchmark evaluation')
    parser.add_argument('--models', nargs='+', help='Models to evaluate (e.g., gpt-4o claude-3-opus)')
    parser.add_argument('--benchmarks', nargs='+', help='Benchmarks to run (e.g., mmlu gsm8k)')
    parser.add_argument('--config', default='config.yaml', help='Config file path')
    parser.add_argument('--output-dir', default='results', help='Output directory for results')
    parser.add_argument('--no-save', action='store_true', help='Do not save results to files')
    
    args = parser.parse_args()
    
    # Load configuration
    config = load_config(args.config)
    
    # Determine which models to evaluate
    if args.models:
        models_to_eval = args.models
    else:
        # Get all models from config
        models_to_eval = []
        for provider, provider_config in config['models'].items():
            for model in provider_config.get('models', []):
                models_to_eval.append(model)
    
    # Determine which benchmarks to run
    if args.benchmarks:
        benchmarks_to_run = args.benchmarks
    else:
        # Get enabled benchmarks from config
        benchmarks_to_run = [
            name for name, bench_config in config['benchmarks'].items()
            if bench_config.get('enabled', True)
        ]
    
    print(f"Models to evaluate: {models_to_eval}")
    print(f"Benchmarks to run: {benchmarks_to_run}")
    
    # Run evaluations
    all_results = []
    
    for model_name in models_to_eval:
        print(f"\n{'='*60}")
        print(f"Evaluating model: {model_name}")
        print(f"{'='*60}")
        
        try:
            # Create API instance
            api = APIFactory.create_api(model_name, config)
            
            # Run each benchmark
            for benchmark_name in benchmarks_to_run:
                print(f"\nRunning {benchmark_name} benchmark...")
                try:
                    result = await run_single_evaluation(api, benchmark_name, config)
                    all_results.append(result)
                    print(f"[OK] {benchmark_name}: {result.accuracy*100:.1f}% accuracy")
                except Exception as e:
                    print(f"[ERROR] {benchmark_name}: Error - {e}")
                    
        except Exception as e:
            print(f"Failed to create API for {model_name}: {e}")
            continue
    
    # Print results table
    print_results_table(all_results)
    
    # Save results
    if not args.no_save and all_results:
        json_path, csv_path = save_results(all_results, args.output_dir)
        print(f"\nResults saved to:")
        print(f"  - {json_path}")
        print(f"  - {csv_path}")

if __name__ == "__main__":
    asyncio.run(main())