File size: 8,980 Bytes
d6cfb5e
 
 
5e4b407
d6cfb5e
 
5e4b407
d6cfb5e
 
 
 
 
 
 
 
 
 
 
 
 
af70222
d6cfb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# %%writefile llm_service.py
import asyncio
import os
from typing import Union

import numpy as np
from loguru import logger
from openai import AsyncOpenAI
from PIL import Image

from encode_image import encode_image
from string_utils import StringUtils

Image.MAX_IMAGE_PIXELS = None  # Removes the limit, use with caution
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")


class OpenAIService:
    def __init__(self):
        # self.llm_settings = getattr(settings.llm, settings.llm.name)
        self.model_name = "o4-mini"  # settings.llm.openai.model
        self.temperature = 0.3  # settings.llm.openai.temperature
        self.client = AsyncOpenAI(api_key=OPENAI_API_KEY)
        # Follow the documentation: https://platform.openai.com/docs/models
        self.deprecated_temperature_models = [
            "o4-mini",
            "o4",
            "o3-mini",
            "o3",
        ]  # settings.llm.openai.deprecated_temperature_models

    @staticmethod
    def encode_image(image: Union[str, np.ndarray]) -> str:
        return encode_image(image=image)

    def get_temperature(self, temperature: float | None) -> dict:
        return (
            {
                "temperature": temperature
                if temperature is not None
                else self.temperature
            }
            if self.model_name not in self.deprecated_temperature_models
            else {}
        )

    async def chat_with_text(
        self,
        prompt: str,
        return_as_json: bool = False,
        retry_left: int = 3,  # settings.llm.openai.retry_left,
        temperature: float | None = None,
    ) -> str:
        """
        Sends a text-based chat prompt to the OpenAI model.

        Args:
            prompt (str): User input text.
            return_as_json (bool): whether to generate output as a json object
            retry_left (int): number of retries left
            temperature (float | None): Controls randomness in the response. Lower values make responses more focused and deterministic.

        Returns:
            str: Response from the model.
        """

        model_kwargs = {
            "model": self.model_name,
            "messages": [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt},
            ],
            **self.get_temperature(temperature=temperature),
        }

        if return_as_json:
            model_kwargs["response_format"] = {"type": "json_object"}

        try:
            response = await self.client.chat.completions.create(**model_kwargs)
        except Exception as e:
            if retry_left > 0:
                logger.warning(f"OpenAI API calling failed due to {e}. Retry!")
                await asyncio.sleep(1)  # quota out
                return await self.chat_with_text(
                    prompt=prompt,
                    return_as_json=return_as_json,
                    retry_left=retry_left - 1,
                    temperature=temperature,
                )
            else:
                logger.error(
                    f"OpenAI API calling failed due to {e}. Return empty string!"
                )
                return ""

        return response.choices[0].message.content

    async def chat_with_image(
        self,
        prompt: str,
        image: str,
        return_as_json: bool = False,
        retry_left: int = 3,  # settings.llm.openai.retry_left,
        temperature: float | None = None,
    ) -> str:
        """
        Sends an image along with a text prompt to the OpenAI model.

        Args:
            prompt (str): User input text.
            image_path (str): Path to the image file.
            return_as_json (bool): whether to generate output as a json object
            retry_left (int): number of retries left
            temperature (float | None): Controls randomness in the response. Lower values make responses more focused and deterministic.

        Returns:
            str: Response from the model.
        """
        if os.path.isfile(image):
            base64_image = self.encode_image(image=image)
        elif StringUtils.is_base64(image):
            base64_image = image
        else:
            raise Exception(
                "ServiceAiError.UNSUPPORT_INPUT_IMAGE_TYPE.as_http_exception()"
            )

        model_kwargs = {
            "model": self.model_name,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64_image}"
                            },
                        },
                    ],
                }
            ],
            **self.get_temperature(temperature=temperature),
        }

        if return_as_json:
            model_kwargs["response_format"] = {"type": "json_object"}

        try:
            response = await self.client.chat.completions.create(**model_kwargs)
        except Exception as e:
            if retry_left > 0:
                logger.warning(f"OpenAI API calling failed due to {e}. Retry!")
                await asyncio.sleep(1)  # quota out
                return await self.chat_with_image(
                    prompt=prompt,
                    image=image,
                    return_as_json=return_as_json,
                    retry_left=retry_left - 1,
                    temperature=temperature,
                )
            else:
                logger.error(
                    f"OpenAI API calling failed due to {e}. Return empty string!"
                )
                return ""
        return response.choices[0].message.content

    async def chat_with_multiple_images(
        self,
        prompt: str,
        images: list[str],
        return_as_json: bool = False,
        retry_left: int = 3,  # settings.llm.openai.retry_left,
        temperature: float | None = None,
    ) -> str:
        """
        Sends multiple images along with a text prompt to the OpenAI model.
        Args:
            prompt (str): User input text.
            images (list[str]): List of base64 encoded images.
            return_as_json (bool): whether to generate output as a json object
            retry_left (int): number of retries left
            temperature (float | None): Controls randomness in the response. Lower values make responses more focused and deterministic.
        Returns:
            list[str]: Responses from the model for each image.
        """
        if len(images) == 0:
            logger.warning("OpenAI chats with multiple images mode without any images")

        base64_images = []
        for image in images:
            if os.path.isfile(image):
                base64_images.append(self.encode_image(image=image))
            elif StringUtils.is_base64(image):
                base64_images.append(image)
            else:
                raise Exception(
                    "ServiceAiError.UNSUPPORT_INPUT_IMAGE_TYPE.as_http_exception()"
                )

        model_kwargs = {
            "model": self.model_name,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        *[
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": f"data:image/jpeg;base64,{base64_image}"
                                },
                            }
                            for base64_image in base64_images
                        ],
                    ],
                }
            ],
            **self.get_temperature(temperature=temperature),
        }

        if return_as_json:
            model_kwargs["response_format"] = {"type": "json_object"}

        try:
            response = await self.client.chat.completions.create(**model_kwargs)
        except Exception as e:
            if retry_left > 0:
                logger.warning(f"OpenAI API calling failed due to {e}. Retry!")
                await asyncio.sleep(1)  # quota out
                return await self.chat_with_multiple_images(
                    prompt=prompt,
                    images=images,
                    return_as_json=return_as_json,
                    retry_left=retry_left - 1,
                    temperature=temperature,
                )
            else:
                logger.error(
                    f"OpenAI API calling failed due to {e}. Return empty list!"
                )
                return ""

        return response.choices[0].message.content


class LLMService:
    @classmethod
    def from_partner(cls):
        return OpenAIService()