File size: 15,892 Bytes
d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e 5e4b407 d6cfb5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
# %%writefile mv_utils_zs.py
"""
Author: yangyangyang127
Github: https://github.com/yangyangyang127
Repo: https://github.com/yangyangyang127/PointCLIP_V2
Path: https://github.com/yangyangyang127/PointCLIP_V2/blob/main/zeroshot_cls/trainers/mv_utils_zs.py#L135
"""
import numpy as np
import torch
import torch.nn as nn
from torch_scatter import scatter
TRANS = -1.5
# realistic projection parameters
params = {
"maxpoolz": 1,
"maxpoolxy": 7,
"maxpoolpadz": 0,
"maxpoolpadxy": 2,
"convz": 1,
"convxy": 3,
"convsigmaxy": 3,
"convsigmaz": 1,
"convpadz": 0,
"convpadxy": 1,
"imgbias": 0.0,
"depth_bias": 0.2,
"obj_ratio": 0.8,
"bg_clr": 0.0,
"resolution": 122,
"depth": 8, # default = 8
"grid_height": 64,
"grid_width": 64,
}
class Grid2Image(nn.Module):
"""A pytorch implementation to turn 3D grid to 2D image.
Maxpool: densifying the grid
Convolution: smoothing via Gaussian
Maximize: squeezing the depth channel
"""
def __init__(self):
super().__init__()
torch.backends.cudnn.benchmark = False
self.maxpool = nn.MaxPool3d(
(params["maxpoolz"], params["maxpoolxy"], params["maxpoolxy"]),
stride=1,
padding=(
params["maxpoolpadz"],
params["maxpoolpadxy"],
params["maxpoolpadxy"],
),
)
self.conv = torch.nn.Conv3d(
1,
1,
kernel_size=(params["convz"], params["convxy"], params["convxy"]),
stride=1,
padding=(params["convpadz"], params["convpadxy"], params["convpadxy"]),
bias=True,
)
kn3d = get3DGaussianKernel(
params["convxy"],
params["convz"],
sigma=params["convsigmaxy"],
zsigma=params["convsigmaz"],
)
self.conv.weight.data = torch.Tensor(kn3d).repeat(1, 1, 1, 1, 1)
self.conv.bias.data.fill_(0) # type: ignore
def forward(self, x):
x = self.maxpool(x.unsqueeze(1))
x = self.conv(x)
img = torch.max(x, dim=2)[0]
img = img / torch.max(torch.max(img, dim=-1)[0], dim=-1)[0][:, :, None, None]
img = 1 - img
img = img.repeat(1, 3, 1, 1)
return img
def euler2mat(angle):
"""Convert euler angles to rotation matrix.
:param angle: [3] or [b, 3]
:return
rotmat: [3] or [b, 3, 3]
source
https://github.com/ClementPinard/SfmLearner-Pytorch/blob/master/inverse_warp.py
"""
if len(angle.size()) == 1:
x, y, z = angle[0], angle[1], angle[2]
_dim = 0
_view = [3, 3]
elif len(angle.size()) == 2:
b, _ = angle.size()
x, y, z = angle[:, 0], angle[:, 1], angle[:, 2]
_dim = 1
_view = [b, 3, 3]
else:
assert False
cosz = torch.cos(z)
sinz = torch.sin(z)
# zero = torch.zeros([b], requires_grad=False, device=angle.device)[0]
# one = torch.ones([b], requires_grad=False, device=angle.device)[0]
zero = z.detach() * 0
one = zero.detach() + 1
zmat = torch.stack(
[cosz, -sinz, zero, sinz, cosz, zero, zero, zero, one], dim=_dim
).reshape(_view)
cosy = torch.cos(y)
siny = torch.sin(y)
ymat = torch.stack(
[cosy, zero, siny, zero, one, zero, -siny, zero, cosy], dim=_dim
).reshape(_view)
cosx = torch.cos(x)
sinx = torch.sin(x)
xmat = torch.stack(
[one, zero, zero, zero, cosx, -sinx, zero, sinx, cosx], dim=_dim
).reshape(_view)
rot_mat = xmat @ ymat @ zmat
# print(rot_mat)
return rot_mat
def points_to_2d_grid(
points, grid_h=params["grid_height"], grid_w=params["grid_width"]
):
"""
Converts a point cloud into a 2D grid based on X, Y coordinates.
Points are projected onto a plane and quantized into grid cells.
Args:
points (torch.tensor): Tensor containing points, shape [B, P, 3]
(B: batch size, P: number of points, 3: x, y, z coordinates)
grid_h (int): Height of the output 2D grid.
grid_w (int): Width of the output 2D grid.
Returns:
grid (torch.tensor): 2D grid representing the occupancy of points,
shape [B, grid_h, grid_w].
Value 1.0 at cell (y, x) if at least one point falls into it,
otherwise the background value (params["bg_clr"]).
"""
batch, pnum, _ = points.shape
device = points.device
# --- Step 1: Normalize point coordinates ---
# Find min/max for each point cloud in the batch (considering only X, Y for better 2D normalization)
pmax_xy = points[:, :, :2].max(dim=1)[0]
pmin_xy = points[:, :, :2].min(dim=1)[0]
# Compute the center and range based on X, Y
pcent_xy = (pmax_xy + pmin_xy) / 2
pcent_xy = pcent_xy[:, None, :] # Add P dimension for broadcasting [B, 1, 2]
# Use the larger range between X and Y to maintain aspect ratio
prange_xy = (pmax_xy - pmin_xy).max(dim=-1)[0][:, None, None] # [B, 1, 1]
# Add a small epsilon to avoid division by zero if all points overlap
epsilon = 1e-8
# Normalize X, Y into the range [-1, 1] based on the X, Y range
points_normalized_xy = (points[:, :, :2] - pcent_xy) / (prange_xy + epsilon) * 2.0
# Adjust the scale according to obj_ratio (if needed)
points_normalized_xy = points_normalized_xy * params["obj_ratio"]
# --- Step 2: Map normalized coordinates to 2D grid indices ---
# Map X from the range [-obj_ratio, obj_ratio] -> [0, grid_w]
# Map Y from the range [-obj_ratio, obj_ratio] -> [0, grid_h]
# General formula: (normalized_coord + scale) / (2 * scale) * grid_dim
_x = (
(points_normalized_xy[:, :, 0] + params["obj_ratio"])
/ (2 * params["obj_ratio"])
* grid_w
)
_y = (
(points_normalized_xy[:, :, 1] + params["obj_ratio"])
/ (2 * params["obj_ratio"])
* grid_h
)
# Round down to determine the grid cell indices
_x = torch.floor(_x).long()
_y = torch.floor(_y).long()
# --- Step 3: Clamp indices to valid grid range ---
# Clip _x to [0, grid_w - 1]
# Clip _y to [0, grid_h - 1]
_x = torch.clip(_x, 0, grid_w - 1)
_y = torch.clip(_y, 0, grid_h - 1)
# --- Step 4: Create a 2D grid and mark occupied cells ---
# Initialize the 2D grid with the background value
grid = torch.full(
(batch, grid_h, grid_w), params["bg_clr"], dtype=torch.float32, device=device
)
# Create batch indices corresponding to each point
batch_indices = torch.arange(batch, device=device).view(-1, 1).repeat(1, pnum)
# Flatten indices for easier assignment
batch_idx_flat = batch_indices.view(-1)
y_idx_flat = _y.view(-1)
x_idx_flat = _x.view(-1)
# Assign a value of 1.0 to grid cells (y, x) corresponding to point positions
# If multiple points fall into the same cell, the cell still has a value of 1.0
grid[batch_idx_flat, y_idx_flat, x_idx_flat] = 1.0
return grid
def points2grid(points, resolution=params["resolution"], depth=params["depth"]):
"""Quantize each point cloud to a 3D grid.
Args:
points (torch.tensor): of size [B, _, 3]
Returns:
grid (torch.tensor): of size [B * self.num_views, depth, resolution, resolution]
"""
batch, pnum, _ = points.shape
pmax, pmin = points.max(dim=1)[0], points.min(dim=1)[0]
pcent = (pmax + pmin) / 2
pcent = pcent[:, None, :]
prange = (pmax - pmin).max(dim=-1)[0][:, None, None]
points = (points - pcent) / prange * 2.0
points[:, :, :2] = points[:, :, :2] * params["obj_ratio"]
depth_bias = params["depth_bias"]
_x = (points[:, :, 0] + 1) / 2 * resolution
_y = (points[:, :, 1] + 1) / 2 * resolution
_z = ((points[:, :, 2] + 1) / 2 + depth_bias) / (1 + depth_bias) * (depth - 2)
_x.ceil_()
_y.ceil_()
z_int = _z.ceil()
_x = torch.clip(_x, 1, resolution - 2)
_y = torch.clip(_y, 1, resolution - 2)
_z = torch.clip(_z, 1, depth - 2)
coordinates = z_int * resolution * resolution + _y * resolution + _x
grid = (
torch.ones([batch, depth, resolution, resolution], device=points.device).view(
batch, -1
)
* params["bg_clr"]
)
grid = scatter(_z, coordinates.long(), dim=1, out=grid, reduce="max")
grid = grid.reshape((batch, depth, resolution, resolution)).permute((0, 1, 3, 2))
return grid
def points_to_occupancy_grid(
points, resolution=params["resolution"], depth=params["depth"]
):
"""Quantize each point cloud into a 3D occupancy grid."""
batch, pnum, _ = points.shape
device = points.device # Get device to create new tensors
# --- Normalization and coordinate mapping remain unchanged ---
pmax, pmin = points.max(dim=1)[0], points.min(dim=1)[0]
pcent = (pmax + pmin) / 2
pcent = pcent[:, None, :]
prange = (pmax - pmin).max(dim=-1)[0][
:, None, None
] + 1e-8 # Add epsilon to avoid division by zero
points_norm = (points - pcent) / prange * 2.0
points_norm[:, :, :2] = points_norm[:, :, :2] * params["obj_ratio"]
depth_bias = params["depth_bias"]
_x = (points_norm[:, :, 0] + 1) / 2 * resolution
_y = (points_norm[:, :, 1] + 1) / 2 * resolution
_z = ((points_norm[:, :, 2] + 1) / 2 + depth_bias) / (1 + depth_bias) * (depth - 2)
_x.ceil_()
_y.ceil_()
z_int = _z.ceil()
_x = torch.clip(_x, 1, resolution - 2)
_y = torch.clip(_y, 1, resolution - 2)
# z_int should also be clipped if used as coordinate indices
z_int = torch.clip(z_int, 1, depth - 2)
# --- Compute flattened coordinates ---
coordinates = z_int * resolution * resolution + _y * resolution + _x
coordinates = coordinates.long() # Convert to Long
# --- Create Grid and Scatter ---
# Initialize the grid with the background value (e.g., 0)
# Use torch.zeros instead of torch.ones and multiply by bg_clr
bg_clr_value = params.get("bg_clr", 0.0) # Get bg_clr, default is 0
grid = torch.full(
(batch, depth * resolution * resolution),
bg_clr_value,
dtype=torch.float32, # Or appropriate dtype
device=device,
)
# Create a source tensor (src) containing a value of 1.0 for each point
# The size must match the flattened coordinates: [B * pnum]
values_to_scatter = torch.ones(batch * pnum, dtype=torch.float32, device=device)
# Scatter the value 1.0 into the grid at the positions `coordinates`
# Use reduce="max". If a cell has at least one point, max(1.0, bg_clr) will be 1.0 (if bg_clr <= 1)
# To ensure the value is always 1 regardless of bg_clr, use a different reduce or post-process after scatter.
# A safer choice if bg_clr can be > 1 is to initialize the grid with 0 and use reduce='max'/'mean'
# Or initialize with bg_clr and process after scatter.
if bg_clr_value != 0.0:
print(
"Warning: bg_clr is not 0.0, occupancy grid might not be strictly binary 0/1 with reduce='max'. Consider initializing grid with 0."
)
grid = scatter(
values_to_scatter,
coordinates.view(-1), # Flatten coordinates to [B*pnum]
dim=0, # Scatter along dimension 0 of the flattened grid [B*D*R*R]
out=grid.view(-1), # Flatten grid to [B*D*R*R] for scatter along dim 0
reduce="max",
) # If a point exists -> cell value is 1, otherwise bg_clr
# --- Reshape and Permute remain unchanged ---
# Reshape the grid back to the correct 3D + batch size
# Note: scatter into a flattened grid requires careful reshaping
grid = grid.view(batch, depth, resolution, resolution) # Reshape back
grid = grid.permute((0, 1, 3, 2))
return grid
class Realistic_Projection:
"""For creating images from PC based on the view information."""
def __init__(self):
_views = np.asarray([
[[1 * np.pi / 4, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[3 * np.pi / 4, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[5 * np.pi / 4, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[7 * np.pi / 4, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[0 * np.pi / 2, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[1 * np.pi / 2, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[2 * np.pi / 2, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[3 * np.pi / 2, 0, np.pi / 2], [-0.5, -0.5, TRANS]],
[[0, -np.pi / 2, np.pi / 2], [-0.5, -0.5, TRANS]],
[[0, np.pi / 2, np.pi / 2], [-0.5, -0.5, TRANS]],
])
# adding some bias to the view angle to reveal more surface
_views_bias = np.asarray([
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 9, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 15, 0], [-0.5, 0, TRANS]],
[[0, np.pi / 15, 0], [-0.5, 0, TRANS]],
])
self.num_views = _views.shape[0]
angle = torch.tensor(_views[:, 0, :]).float() # .cuda()
self.rot_mat = euler2mat(angle).transpose(1, 2)
angle2 = torch.tensor(_views_bias[:, 0, :]).float() # .cuda()
self.rot_mat2 = euler2mat(angle2).transpose(1, 2)
self.translation = torch.tensor(_views[:, 1, :]).float() # .cuda()
self.translation = self.translation.unsqueeze(1)
self.grid2image = Grid2Image() # .cuda()
def get_img(self, points):
b, _, _ = points.shape
v = self.translation.shape[0]
_points = self.point_transform(
points=torch.repeat_interleave(points, v, dim=0),
rot_mat=self.rot_mat.repeat(b, 1, 1),
rot_mat2=self.rot_mat2.repeat(b, 1, 1),
translation=self.translation.repeat(b, 1, 1),
)
grid = points2grid(
points=_points, resolution=params["resolution"], depth=params["depth"]
).squeeze()
img = self.grid2image(grid)
return img
@staticmethod
def point_transform(points, rot_mat, rot_mat2, translation):
"""
:param points: [batch, num_points, 3]
:param rot_mat: [batch, 3]
:param rot_mat2: [batch, 3]
:param translation: [batch, 1, 3]
:return:
"""
rot_mat = rot_mat.to(points.device)
rot_mat2 = rot_mat2.to(points.device)
translation = translation.to(points.device)
points = torch.matmul(points, rot_mat)
points = torch.matmul(points, rot_mat2)
points = points - translation
return points
def get2DGaussianKernel(ksize, sigma=0):
center = ksize // 2
xs = np.arange(ksize, dtype=np.float32) - center
kernel1d = np.exp(-(xs**2) / (2 * sigma**2))
kernel = kernel1d[..., None] @ kernel1d[None, ...]
kernel = torch.from_numpy(kernel)
kernel = kernel / kernel.sum()
return kernel
# Without numpy
# def get2DGaussianKernel(ksize, sigma):
# xs = torch.linspace(-(ksize // 2), ksize // 2, steps=ksize)
# kernel1d = torch.exp(-(xs ** 2) / (2 * sigma ** 2))
# kernel2d = torch.outer(kernel1d, kernel1d)
# kernel2d /= kernel2d.sum()
# return kernel2d
def get3DGaussianKernel(ksize, depth, sigma=2, zsigma=2):
kernel2d = get2DGaussianKernel(ksize, sigma)
zs = np.arange(depth, dtype=np.float32) - depth // 2
zkernel = np.exp(-(zs**2) / (2 * zsigma**2))
kernel3d = np.repeat(kernel2d[None, :, :], depth, axis=0) * zkernel[:, None, None]
kernel3d = kernel3d / torch.sum(kernel3d)
return kernel3d
|